Menu Close

Solve-39-10-a-a-2-9-a-2-2-14-a-R-Mr-Rasheed-yesterday-i-solved-it-on-a-draft-paper-When-i-came-today-to-write-it-down-on-the-notebook-i-got-into-a-maze-do-you




Question Number 182681 by Acem last updated on 12/Dec/22
 Solve (√(39− 10 a −a^2 )) + (√(9−a^2 )) = 2 (√(14))   ; a∈ R^(+★)    @Mr. Rasheed, yesterday i solved it on a draft paper   When i came today to write it down on   the notebook i got into a maze, do you have   an easy way to deal with? “if you have time”   i lost that paper, and this formula makes me   laugh at myself, it′s for 13 y/o “confused face”    Sure Every friend can share!
Solve3910aa2+9a2=214;aR+@Mr.Rasheed,yesterdayisolveditonadraftpaperWhenicametodaytowriteitdownonthenotebookigotintoamaze,doyouhaveaneasywaytodealwith?ifyouhavetimeilostthatpaper,andthisformulamakesmelaughatmyself,itsfor13y/oconfusedfaceSureEveryfriendcanshare!
Commented by mr W last updated on 12/Dec/22
2(√(14)) or 2(√(24)) ?
214or224?
Commented by Acem last updated on 12/Dec/22
No, it′s about 1.383 8 Sir , am not ok right now   i will solve it again later though it′s so boring
No,itsabout1.3838Sir,amnotokrightnowiwillsolveitagainlaterthoughitssoboring
Commented by mr W last updated on 13/Dec/22
i didn′t mean the answer is 2(√(14)) or  2(√(24)). i asked if it is 2(√(14)) or 2(√(24)) in the   question.  i have a different solution than you  all, see below.
ididntmeantheansweris214or224.iaskedifitis214or224inthequestion.ihaveadifferentsolutionthanyouall,seebelow.
Commented by manxsol last updated on 13/Dec/22
  Sir W could share his solution.I   would appreciate it if you  critque my solution.
SirWcouldsharehissolution.Iwouldappreciateitifyoucritquemysolution.
Commented by manxsol last updated on 14/Dec/22
combination   metod friz+metod rasheed  solution  (√x)+(√y)=(√u)       x(a),y(a), u=k  4ux=[u+(x−y)]^2      I  4uy=[u−(x−y)]^2      II  sea  x−y=qa+b    lineal  solve I   ⇒ma^2 +na+p  solve II⇒ ma^2 +na+p  solve ma^2 +na+p=0  a_1   a_2   DEVELOPING  (√x)+(√y)=(√u)  ((√x)−(√y))((√x)+(√y))=(√u)((√x)−(√y))  x−y=(√u) ((√x)−(√y))  ..................  (√x)−(√y)=(((x−y))/( (√u)))  (√x)+(√y)=(√u)  ..................  add  2(√x)=(((u+(x−y)))/( (√u)))  4xu=(u+(x−y)^2 )  4yu=(u−(x−y)^2 )  CONCLUSION  (√x)+(√y)=(√u)  is equivalent a solve  {4xu=(u+(x−y))^2   } ∪  {4yu=(u−(x−y))^(2  ) }
combinationmetodfriz+metodrasheedsolutionx+y=ux(a),y(a),u=k4ux=[u+(xy)]2I4uy=[u(xy)]2IIseaxy=qa+blinealsolveIma2+na+psolveIIma2+na+psolvema2+na+p=0a1a2DEVELOPINGx+y=u(xy)(x+y)=u(xy)xy=u(xy)xy=(xy)ux+y=uadd2x=(u+(xy))u4xu=(u+(xy)2)4yu=(u(xy)2)CONCLUSIONx+y=uisequivalentasolve{4xu=(u+(xy))2}{4yu=(u(xy))2}
Commented by manxsol last updated on 14/Dec/22
aplication  (√(39−10a−a^2 ))+(√(9−a^2 ))=2(√(14))  x=39−10a−a^2   y=9−a^2   u=56  the magic  :  x−y=30−10a  solve with 4yu=(u−(x−y))^2   (it easy)  4(56)(9−a^2 )=[56−(30−10a)]^2   4(56)(9−a^2 )=[26+10a]^2   504−56a^2 =(13+5a)^2   504−56a^2 =169+25a^2 +130a  81a^2 +130a−335=0  a_1 = 1.3837  a_2 =−2.9887 root strange
aplication3910aa2+9a2=214x=3910aa2y=9a2u=56themagic:xy=3010asolvewith4yu=(u(xy))2(iteasy)4(56)(9a2)=[56(3010a)]24(56)(9a2)=[26+10a]250456a2=(13+5a)250456a2=169+25a2+130a81a2+130a335=0a1=1.3837a2=2.9887rootstrange
Answered by Frix last updated on 12/Dec/22
Generally: (√u)+(√v)=w  Squaring and transforming ⇒  2(√u)(√v)+v=w^2 −u−v  Squaring and transforming ⇒  −4uv+(w^2 −u−v)^2 =0  Inserting u=−a^2 −10a+39∧v=−a^2 +9∧w=2(√(14))  324a^2 +520a−1340=0  a^2 +((130a)/(81))−((335)/(81))=0  a>0 ⇒ a=((−65+56(√(10)))/(81))≈1.38379690  No “magic” possible
Generally:u+v=wSquaringandtransforming2uv+v=w2uvSquaringandtransforming4uv+(w2uv)2=0Insertingu=a210a+39v=a2+9w=214324a2+520a1340=0a2+130a8133581=0a>0a=65+5610811.38379690Nomagicpossible
Commented by Acem last updated on 12/Dec/22
 I thought in substituation the variable but   i figured out that there will be still problems   I ask for a magical way if is there?
IthoughtinsubstituationthevariablebutifiguredoutthattherewillbestillproblemsIaskforamagicalwayifisthere?
Commented by Acem last updated on 12/Dec/22
Can you show all steps?
Canyoushowallsteps?
Commented by Frix last updated on 12/Dec/22
I inserted a few lines more
Iinsertedafewlinesmore
Commented by Acem last updated on 13/Dec/22
Commented by Acem last updated on 13/Dec/22
 How did you make the formula?
Howdidyoumaketheformula?
Answered by Acem last updated on 12/Dec/22
(√(39− 10 a −a^2 )) + (√(9−a^2 )) = 2 (√(14))   (√(10(3 −a) +(9−a^2 ))) + (√(9−a^2 )) = 2(√(14))   (√(9−a^2 )) ((√((10(3−a))/(9−a^2 ))) +1)= 2(√(14))  ((10(3−a))/(9−a^2 )) +1 + 2 (√((10(3−a))/(9−a^2 ))) = ((56)/(9−a^2 ))  (√((10(3−a))/(9−a^2 ))) = (1/2)[ ((56)/(9−a^2 )) − ((10(3−a))/(9−a^2 ))  −1]_(making it as one term) ^(No usefull with (3−a)(3+a))    10 = (3+a)^  × S_2 ^( 2) ^↗    etc... etc until we get rid of the root   To face another complicated problems   40= (((a^2 + 10a +17)^2 )/((3−a)^2  (3+a)))        ∼ Boriiiing   40= (([(a+5)^2  −8]^2 )/((3−a)^2  (3+a)))     Hfff
3910aa2+9a2=21410(3a)+(9a2)+9a2=2149a2(10(3a)9a2+1)=21410(3a)9a2+1+210(3a)9a2=569a210(3a)9a2=12[569a210(3a)9a21]makingitasonetermNousefullwith(3a)(3+a)10=(3+a)×S22↗etcetcuntilwegetridoftherootTofaceanothercomplicatedproblems40=(a2+10a+17)2(3a)2(3+a)Boriiiing40=[(a+5)28]2(3a)2(3+a)Hfff
Answered by Rasheed.Sindhi last updated on 13/Dec/22
(√(39−10a−a^2 ))  +(√(9−a^2 ))  =2(√(14))  _(−)    ⇒∣a∣<3   ((√(39−10a−a^2 ))  +(√(9−a^2 )) )((√(39−10a−a^2 ))  −(√(9−a^2 )) ) =2(√(14)) ((√(39−10a−a^2 ))  −(√(9−a^2 )) )  39−10a−a^2 −9+a^2 =2(√(14)) ((√(39−10a−a^2 ))  −(√(9−a^2 )) )  (√(39−10a−a^2 ))  −(√(9−a^2 )) =((30−10a)/(2(√(14))))  (√(39−10a−a^2 ))  −(√(9−a^2 )) =((15−5a)/( (√(14))))   determinant ((((√(39−10a−a^2 ))  −(√(9−a^2 )) =((15−5a)/( (√(14))))_((√(39−10a−a^2 ))  +(√(9−a^2 )) = ^( ) 2(√(14 )) ...(ii)           ) ...(i))))  (ii)−(i) : 2(√(9−a^2 )) =2(√(14)) −((15−5a)/( (√(14))))                    =((28−15+5a)/( (√(14))))=((13+5a)/( (√(14))))  {2((√(9−a^2 )))}^2 =(((13+5a)/( (√(14)))))^2   4(9−a^2 )=((169+130a+25a^2 )/(14))  504−56a^2 =169+130a+25a^2   81a^2 +130a−335=0  a=((−130±(√(130^2 −4(81)(−335))))/(162))  a=((−65±56(√(10)))/(81))  a=1.3838^✓ ,−2.9888(Extraneous)
3910aa2+9a2=214⇒∣a∣<3(3910aa2+9a2)(3910aa29a2)=214(3910aa29a2)3910aa29+a2=214(3910aa29a2)3910aa29a2=3010a2143910aa29a2=155a143910aa29a2=155a143910aa2+9a2=214(ii)(i)(ii)(i):29a2=214155a14=2815+5a14=13+5a14{2(9a2)}2=(13+5a14)24(9a2)=169+130a+25a21450456a2=169+130a+25a281a2+130a335=0a=130±13024(81)(335)162a=65±561081a=1.3838,2.9888(Extraneous)
Commented by Acem last updated on 13/Dec/22
Weeeeee! Shokrannnn  I will see the 2 your methods when finish work  Thank you with all my heart!
Weeeeee!ShokrannnnIwillseethe2yourmethodswhenfinishworkThankyouwithallmyheart!
Commented by Rasheed.Sindhi last updated on 13/Dec/22
You′re welcome sir!
Yourewelcomesir!
Answered by Rasheed.Sindhi last updated on 13/Dec/22
(√(39−10a−a^2 )) _(x) +(√(9−a^2 )) _(y) =2(√(14))  x+y=2(√(14)) ......(i)  x^2 −y^2 =(39−10a−a^2 )−(9−a^2 )=30−10a  x−y=((x^2 −y^2 )/(x+y))=((30−10a)/(2(√(14))))=((15−5a)/( (√(14))))...(ii)  (i)−(ii):   2y=2(√(14)) −((15−5a)/( (√(14))))=((28−15+5a)/( (√(14))))  y=((13+5a)/(2(√(14))))  (√(9−a^2 )) =((13+5a)/(2(√(14))))  9−a^2 =(((13+5a)/(2(√(14)))))^2 =((169+130a+25a^2 )/(56))  504−56a^2 =169+130a+25a^2   81a^2 +130a−335=0       a=((−130±(√(130^2 −4(81)(−335))))/(162))         =((−130±112(√(10)) )/(162))         =((−65±56(√(10)) )/(81))        =1.3838^✓  , −2.9888(Not required)
3910aa2x+9a2y=214x+y=214(i)x2y2=(3910aa2)(9a2)=3010axy=x2y2x+y=3010a214=155a14(ii)(i)(ii):2y=214155a14=2815+5a14y=13+5a2149a2=13+5a2149a2=(13+5a214)2=169+130a+25a25650456a2=169+130a+25a281a2+130a335=0a=130±13024(81)(335)162=130±11210162=65±561081=1.3838,2.9888(Notrequired)
Commented by Acem last updated on 13/Dec/22
Thank you! dear friend
Thankyou!dearfriend
Commented by manxsol last updated on 13/Dec/22
wait,Sir Acem other method
wait,SirAcemothermethod
Commented by manxsol last updated on 13/Dec/22
solution not is completed
solutionnotiscompleted
Commented by manxsol last updated on 13/Dec/22
I found the magic against boredom
Ifoundthemagicagainstboredom
Answered by mr W last updated on 14/Dec/22
Commented by mr W last updated on 13/Dec/22
geometric method    (√(39−10x−x^2 ))+(√(9−x^2 ))=2(√(14))  ⇒(√(8^2 −(5+x)^2 ))+(√(3^2 −x^2 ))=2(√(14))  the geometric meaning of this  equation see diagram above.  (√(5^2 +(2(√(14)))^2 ))=9  sin α=(5/9) ⇒cos α=((2(√(14)))/9)  cos β=((8^2 +9^2 −3^2 )/(2×8×9))=((17)/(18)) ⇒sin β=((√(35))/(18))  5+x=8 sin (α+β)           =8 ((5/9)×((17)/(18))+((2(√(14)))/9)×((√(35))/(18)))           =((4(85+14(√(10))))/(81))   ⇒x=((4(85+14(√(10))))/(81))−5=((56(√(10))−65)/(81)) ✓
geometricmethod3910xx2+9x2=21482(5+x)2+32x2=214thegeometricmeaningofthisequationseediagramabove.52+(214)2=9sinα=59cosα=2149cosβ=82+92322×8×9=1718sinβ=35185+x=8sin(α+β)=8(59×1718+2149×3518)=4(85+1410)81x=4(85+1410)815=56106581
Commented by manxsol last updated on 14/Dec/22
you are great!
youaregreat!

Leave a Reply

Your email address will not be published. Required fields are marked *