Menu Close

solve-5-lgx-50-x-lg5-




Question Number 170203 by bounhome last updated on 18/May/22
solve: 5^(lgx) =50−x^(lg5)
$${solve}:\:\mathrm{5}^{{lgx}} =\mathrm{50}−{x}^{{lg}\mathrm{5}} \\ $$
Answered by aleks041103 last updated on 18/May/22
5^(lgx) =10^((lgx)(lg5)) =y  x^(lg5) =10^((lgx)(lg5)) =y  ⇒2y=50  ⇒y=5^(lgx) =25  ⇒lgx=2⇒x=10^2 =100  ⇒x=100
$$\mathrm{5}^{{lgx}} =\mathrm{10}^{\left({lgx}\right)\left({lg}\mathrm{5}\right)} ={y} \\ $$$${x}^{{lg}\mathrm{5}} =\mathrm{10}^{\left({lgx}\right)\left({lg}\mathrm{5}\right)} ={y} \\ $$$$\Rightarrow\mathrm{2}{y}=\mathrm{50} \\ $$$$\Rightarrow{y}=\mathrm{5}^{{lgx}} =\mathrm{25} \\ $$$$\Rightarrow{lgx}=\mathrm{2}\Rightarrow{x}=\mathrm{10}^{\mathrm{2}} =\mathrm{100} \\ $$$$\Rightarrow{x}=\mathrm{100} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *