Menu Close

Solve-5-log-x-logx-5-25-




Question Number 13152 by tawa tawa last updated on 15/May/17
Solve:  5^(log(x))  + logx^5  = 25
$$\mathrm{Solve}:\:\:\mathrm{5}^{\mathrm{log}\left(\mathrm{x}\right)} \:+\:\mathrm{logx}^{\mathrm{5}} \:=\:\mathrm{25} \\ $$
Answered by mrW1 last updated on 16/May/17
log x=t  5^t +5t=25  5^t =5(5−t)  5^(t−5) =((5−t)/(625))  e^((t−5)ln 5) =((5−t)/(625))  (5−t)ln 5e^((t−5)ln 5) =625×ln 5  (5−t)ln 5=W(625×ln 5)  t=5−((W(625×ln 5))/(ln 5))=log x  ⇒x=10^(5−((W(625×ln 5))/(ln 5))) ≈10^(5−((5.254544)/(ln 5))) ≈54.346
$$\mathrm{log}\:{x}={t} \\ $$$$\mathrm{5}^{{t}} +\mathrm{5}{t}=\mathrm{25} \\ $$$$\mathrm{5}^{{t}} =\mathrm{5}\left(\mathrm{5}−{t}\right) \\ $$$$\mathrm{5}^{{t}−\mathrm{5}} =\frac{\mathrm{5}−{t}}{\mathrm{625}} \\ $$$${e}^{\left({t}−\mathrm{5}\right)\mathrm{ln}\:\mathrm{5}} =\frac{\mathrm{5}−{t}}{\mathrm{625}} \\ $$$$\left(\mathrm{5}−{t}\right)\mathrm{ln}\:\mathrm{5}{e}^{\left({t}−\mathrm{5}\right)\mathrm{ln}\:\mathrm{5}} =\mathrm{625}×\mathrm{ln}\:\mathrm{5} \\ $$$$\left(\mathrm{5}−{t}\right)\mathrm{ln}\:\mathrm{5}={W}\left(\mathrm{625}×\mathrm{ln}\:\mathrm{5}\right) \\ $$$${t}=\mathrm{5}−\frac{{W}\left(\mathrm{625}×\mathrm{ln}\:\mathrm{5}\right)}{\mathrm{ln}\:\mathrm{5}}=\mathrm{log}\:{x} \\ $$$$\Rightarrow{x}=\mathrm{10}^{\mathrm{5}−\frac{{W}\left(\mathrm{625}×\mathrm{ln}\:\mathrm{5}\right)}{\mathrm{ln}\:\mathrm{5}}} \approx\mathrm{10}^{\mathrm{5}−\frac{\mathrm{5}.\mathrm{254544}}{\mathrm{ln}\:\mathrm{5}}} \approx\mathrm{54}.\mathrm{346} \\ $$
Commented by tawa tawa last updated on 15/May/17
Wow, God bless you sir.
$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *