Menu Close

Solve-5-log-x-logx-5-25-




Question Number 13152 by tawa tawa last updated on 15/May/17
Solve:  5^(log(x))  + logx^5  = 25
Solve:5log(x)+logx5=25
Answered by mrW1 last updated on 16/May/17
log x=t  5^t +5t=25  5^t =5(5−t)  5^(t−5) =((5−t)/(625))  e^((t−5)ln 5) =((5−t)/(625))  (5−t)ln 5e^((t−5)ln 5) =625×ln 5  (5−t)ln 5=W(625×ln 5)  t=5−((W(625×ln 5))/(ln 5))=log x  ⇒x=10^(5−((W(625×ln 5))/(ln 5))) ≈10^(5−((5.254544)/(ln 5))) ≈54.346
logx=t5t+5t=255t=5(5t)5t5=5t625e(t5)ln5=5t625(5t)ln5e(t5)ln5=625×ln5(5t)ln5=W(625×ln5)t=5W(625×ln5)ln5=logxx=105W(625×ln5)ln51055.254544ln554.346
Commented by tawa tawa last updated on 15/May/17
Wow, God bless you sir.
Wow,Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *