Menu Close

solve-5-logx-50-x-log5-




Question Number 172074 by Mikenice last updated on 23/Jun/22
solve:  5^(logx) =50−x^(log5)
$${solve}: \\ $$$$\mathrm{5}^{{logx}} =\mathrm{50}−{x}^{{log}\mathrm{5}} \\ $$
Answered by aleks041103 last updated on 23/Jun/22
5^(logx) =10^(log5 logx) =(10^(logx) )^(log5) =x^(log5)   ⇒2.5^(logx) =50  ⇒5^(logx) =25=5^2 ⇒logx=2  ⇒x=100
$$\mathrm{5}^{{logx}} =\mathrm{10}^{{log}\mathrm{5}\:{logx}} =\left(\mathrm{10}^{{logx}} \right)^{{log}\mathrm{5}} ={x}^{{log}\mathrm{5}} \\ $$$$\Rightarrow\mathrm{2}.\mathrm{5}^{{logx}} =\mathrm{50} \\ $$$$\Rightarrow\mathrm{5}^{{logx}} =\mathrm{25}=\mathrm{5}^{\mathrm{2}} \Rightarrow{logx}=\mathrm{2} \\ $$$$\Rightarrow{x}=\mathrm{100} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *