Menu Close

solve-arc-cos-x-1-2arc-cos-x-where-x-is-real-




Question Number 106214 by john santu last updated on 03/Aug/20
solve : arc cos (x−1)= 2arc cos (x)  where x is real.
$$\mathrm{solve}\::\:\mathrm{arc}\:\mathrm{cos}\:\left(\mathrm{x}−\mathrm{1}\right)=\:\mathrm{2arc}\:\mathrm{cos}\:\left(\mathrm{x}\right) \\ $$$$\mathrm{where}\:\mathrm{x}\:\mathrm{is}\:\mathrm{real}. \\ $$
Answered by bobhans last updated on 03/Aug/20
⇒cos (arc cos (x−1))= cos (2 arc cos (x))  ⇒ x−1 = 2 cos^2 (arc cos (x))−1  ⇒ x −1 = 2x^2 −1  → { ((x=0 or)),((x=(1/2))) :}
$$\Rightarrow\mathrm{cos}\:\left(\mathrm{arc}\:\mathrm{cos}\:\left(\mathrm{x}−\mathrm{1}\right)\right)=\:\mathrm{cos}\:\left(\mathrm{2}\:\mathrm{arc}\:\mathrm{cos}\:\left(\mathrm{x}\right)\right) \\ $$$$\Rightarrow\:\mathrm{x}−\mathrm{1}\:=\:\mathrm{2}\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{arc}\:\mathrm{cos}\:\left(\mathrm{x}\right)\right)−\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{x}\:−\mathrm{1}\:=\:\mathrm{2x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\rightarrow\begin{cases}{\mathrm{x}=\mathrm{0}\:\mathrm{or}}\\{\mathrm{x}=\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *