Menu Close

solve-at-Z-2-x-2-2y-2-xy-2-0-




Question Number 63945 by mathmax by abdo last updated on 11/Jul/19
solve at Z^2   x^2 −2y^2  +xy +2 =0
$${solve}\:{at}\:{Z}^{\mathrm{2}} \:\:{x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} \:+{xy}\:+\mathrm{2}\:=\mathrm{0} \\ $$
Commented by hknkrc46 last updated on 11/Jul/19
x^2 −2y^2 +xy+2=(x^2 −y^2 )+(xy−y^2 )+2=0  (x−y)(x+y)+y(x−y)+2=0  (x−y)(x+y+y)+2=0  (x−y)(x+2y)+2=0  1) x−y=1∧x+2y=−2⇒(x,y)=(0,−1)  2) x−y=−1∧x+2y=2⇒(x,y)=(0,1)  3) x−y=2∧x+2y=−1⇒(x,y)=(1,−1)  4) x−y=−2∧x+2y=1⇒(x,y)=(−1,1)
$${x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} +{xy}+\mathrm{2}=\left({x}^{\mathrm{2}} −{y}^{\mathrm{2}} \right)+\left({xy}−{y}^{\mathrm{2}} \right)+\mathrm{2}=\mathrm{0} \\ $$$$\left({x}−{y}\right)\left({x}+{y}\right)+{y}\left({x}−{y}\right)+\mathrm{2}=\mathrm{0} \\ $$$$\left({x}−{y}\right)\left({x}+{y}+{y}\right)+\mathrm{2}=\mathrm{0} \\ $$$$\left({x}−{y}\right)\left({x}+\mathrm{2}{y}\right)+\mathrm{2}=\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{x}−{y}=\mathrm{1}\wedge{x}+\mathrm{2}{y}=−\mathrm{2}\Rightarrow\left({x},{y}\right)=\left(\mathrm{0},−\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{x}−{y}=−\mathrm{1}\wedge{x}+\mathrm{2}{y}=\mathrm{2}\Rightarrow\left({x},{y}\right)=\left(\mathrm{0},\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{x}−{y}=\mathrm{2}\wedge{x}+\mathrm{2}{y}=−\mathrm{1}\Rightarrow\left({x},{y}\right)=\left(\mathrm{1},−\mathrm{1}\right) \\ $$$$\left.\mathrm{4}\right)\:{x}−{y}=−\mathrm{2}\wedge{x}+\mathrm{2}{y}=\mathrm{1}\Rightarrow\left({x},{y}\right)=\left(−\mathrm{1},\mathrm{1}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *