Menu Close

Solve-by-computer-programing-if-possible-d-lt-a-lt-b-amp-c-lt-a-b-gt-2c-a-2-b-2-5c-2-2d-2-a-b-c-d-N-c-2-d-2-a-2-i-2c-2-d-2-




Question Number 188442 by BaliramKumar last updated on 03/Mar/23
  Solve by computer programing  (if possible)                  d<a<b & c < a, b>2c  a^2 +b^2 = 5c^2 +2d^2             (a, b, c, d  ∈ N)  c^2 +d^2  = a^2         .........(i)  (2c)^2 +d^2  = b^2   .........(ii)                       (a, b, c, d) = ?
$$ \\ $$$${Solve}\:{by}\:{computer}\:{programing} \\ $$$$\left({if}\:{possible}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{d}<{a}<{b}\:\&\:{c}\:<\:{a},\:{b}>\mathrm{2}{c} \\ $$$$\cancel{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\:\mathrm{5}{c}^{\mathrm{2}} +\mathrm{2}{d}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\left({a},\:{b},\:{c},\:{d}\:\:\in\:\mathrm{N}\right) \\ $$$${c}^{\mathrm{2}} +{d}^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} \:\:\:\:\:\:\:\:………\left({i}\right) \\ $$$$\left(\mathrm{2}{c}\right)^{\mathrm{2}} +{d}^{\mathrm{2}} \:=\:{b}^{\mathrm{2}} \:\:………\left({ii}\right) \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a},\:{b},\:{c},\:{d}\right)\:=\:? \\ $$
Answered by nikif99 last updated on 02/Mar/23
Many solutions (26 for a, b, c, d ≤30)
$${Many}\:{solutions}\:\left(\mathrm{26}\:{for}\:{a},\:{b},\:{c},\:{d}\:\leqslant\mathrm{30}\right) \\ $$
Commented by nikif99 last updated on 02/Mar/23
Commented by BaliramKumar last updated on 03/Mar/23
now 2 equations&..⇊  a>d  a>c  b>a  b>2c  b>d
$${now}\:\mathrm{2}\:{equations\&}..\downdownarrows \\ $$$${a}>{d} \\ $$$${a}>{c} \\ $$$${b}>{a} \\ $$$${b}>\mathrm{2}{c} \\ $$$${b}>{d} \\ $$
Commented by BaliramKumar last updated on 03/Mar/23
Commented by nikif99 last updated on 03/Mar/23
No integer solution for a, b, c, d ≤1000
$${No}\:{integer}\:{solution}\:{for}\:{a},\:{b},\:{c},\:{d}\:\leqslant\mathrm{1000} \\ $$
Commented by BaliramKumar last updated on 03/Mar/23
Thanks Sir      for information
$${Thanks}\:{Sir}\:\:\:\:\:\:{for}\:{information} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *