solve-by-laplace-transform-y-3y-2y-e-x-withy-0-1-and-y-0-2- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 95694 by mathmax by abdo last updated on 27/May/20 solvebylaplacetransformy″+3y′+2y=e−xwithy(0)=1andy′(0)=2 Answered by mathmax by abdo last updated on 27/May/20 (e)⇒L(y″)+3L(y′)+2L(y)=L(e−x)⇒x2L(y)−xy(0)−y′(0)+3(xL(y)−y(0))+2L(y)=L(e−x)⇒(x2+3x+2)L(y)−x−2−3=L(e−x)⇒(x2+3x+2)L(y)=x+5+L(e−x)L(e−x)=∫0∞e−te−xtdt=∫0∞e−(1+x)tdt=[−11+xe−(1+x)t]0∞=1x+1so(e)⇒(x2+3x+2)L(y)=x+5+1x+1⇒L(y)=x+5x2+3x+2+1(x+1)(x2+3x+2)⇒y(x)=L−1(x+5x2+3x+2)+L−1(1(x+1)(x2+3x+2))x2+3x+2=x2−1+3x+3=(x−1)(x+1)+3(x+1)=(x+1)(x−1+3)=(x+1)(x+2)⇒x+5x2+3x+2=x+5(x+1)(x+2)=ax+1+bx+2a=4andb=3−1=−3⇒x+5x2+3x+2=4x+1−3x+2⇒L−1(x+5x2+3x+2)=4L−1(1x+1)−3L−1(1x+2)=4e−x−3e−2xletdecomposeg(x)=1(x+1)(x2+3x+2)⇒g(x)=1(x+1)2(x+2)=ax+1+b(x+1)2+cx+2b=1andc=1⇒g(x)=ax+1+1(x+1)2+1x+2limx→+∞xg(x)=0=a+1⇒a=−1⇒g(x)=−1x+1+1(x+1)2+1x+2⇒L−1(g(x))=−e−x+xe−x+e−2x⇒y(x)=4e−x−3e−2x−e−x+xe−x+e−2x=3e−x−2e−2x+xe−x⇒y(x)=(x+3)e−x−2e−2x Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-x-1-y-x-3-y-arctan-2x-Next Next post: Given-f-x-1-x-x-1-x-1-x-gt-1-find-3-8-f-x-1-f-x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.