Menu Close

solve-by-laplace-transform-y-3y-2y-e-x-withy-0-1-and-y-0-2-




Question Number 95694 by mathmax by abdo last updated on 27/May/20
solve by laplace transform  y^(′′)  +3y^′ +2y =e^(−x)   withy(0)=1 and y^′ (0) =2
solvebylaplacetransformy+3y+2y=exwithy(0)=1andy(0)=2
Answered by mathmax by abdo last updated on 27/May/20
(e)⇒L(y^(′′) )+3L(y^′ )+2L(y) =L(e^(−x) ) ⇒  x^2 L(y)−xy(0)−y^′ (0)+3(xL(y)−y(0))+2L(y) =L(e^(−x) ) ⇒  (x^2 +3x+2)L(y)−x−2−3 =L(e^(−x) ) ⇒(x^2 +3x+2)L(y) =x+5 +L(e^(−x) )  L(e^(−x) ) =∫_0 ^∞  e^(−t)  e^(−xt)  dt =∫_0 ^∞  e^(−(1+x)t)  dt =[−(1/(1+x))e^(−(1+x)t) ]_0 ^∞   =(1/(x+1)) so (e) ⇒(x^2  +3x+2)L(y) =x+5+(1/(x+1)) ⇒  L(y) =((x+5)/(x^2  +3x+2)) +(1/((x+1)(x^2  +3x+2))) ⇒y(x)=L^(−1) (((x+5)/(x^2  +3x+2)))+L^(−1) ((1/((x+1)(x^2  +3x+2))))  x^2  +3x+2 =x^2 −1 +3x+3 =(x−1)(x+1)+3(x+1) =(x+1)(x−1+3)  =(x+1)(x+2) ⇒((x+5)/(x^2  +3x+2)) =((x+5)/((x+1)(x+2))) =(a/(x+1)) +(b/(x+2))  a =4  and b =(3/(−1))=−3 ⇒((x+5)/(x^2  +3x+2)) =(4/(x+1))−(3/(x+2)) ⇒  L^(−1) (((x+5)/(x^2  +3x+2))) =4L^(−1) ((1/(x+1)))−3L^(−1) ((1/(x+2))) =4e^(−x)  −3e^(−2x)   let decompose g(x) =(1/((x+1)(x^2 +3x+2))) ⇒g(x) =(1/((x+1)^2 (x+2)))  =(a/(x+1)) +(b/((x+1)^2 )) +(c/(x+2))  b =1  and c =1 ⇒g(x) =(a/(x+1)) +(1/((x+1)^2 )) +(1/(x+2))  lim_(x→+∞) xg(x) =0 =a +1 ⇒a =−1 ⇒g(x) =−(1/(x+1)) +(1/((x+1)^2 )) +(1/(x+2)) ⇒  L^(−1) (g(x)) =−e^(−x)  +xe^(−x) +e^(−2x)   ⇒  y(x) =4e^(−x) −3e^(−2x)    −e^(−x)  +xe^(−x)  +e^(−2x)  =3e^(−x) −2e^(−2x)  +xe^(−x)   ⇒y(x) =(x+3)e^(−x) −2e^(−2x)
(e)L(y)+3L(y)+2L(y)=L(ex)x2L(y)xy(0)y(0)+3(xL(y)y(0))+2L(y)=L(ex)(x2+3x+2)L(y)x23=L(ex)(x2+3x+2)L(y)=x+5+L(ex)L(ex)=0etextdt=0e(1+x)tdt=[11+xe(1+x)t]0=1x+1so(e)(x2+3x+2)L(y)=x+5+1x+1L(y)=x+5x2+3x+2+1(x+1)(x2+3x+2)y(x)=L1(x+5x2+3x+2)+L1(1(x+1)(x2+3x+2))x2+3x+2=x21+3x+3=(x1)(x+1)+3(x+1)=(x+1)(x1+3)=(x+1)(x+2)x+5x2+3x+2=x+5(x+1)(x+2)=ax+1+bx+2a=4andb=31=3x+5x2+3x+2=4x+13x+2L1(x+5x2+3x+2)=4L1(1x+1)3L1(1x+2)=4ex3e2xletdecomposeg(x)=1(x+1)(x2+3x+2)g(x)=1(x+1)2(x+2)=ax+1+b(x+1)2+cx+2b=1andc=1g(x)=ax+1+1(x+1)2+1x+2limx+xg(x)=0=a+1a=1g(x)=1x+1+1(x+1)2+1x+2L1(g(x))=ex+xex+e2xy(x)=4ex3e2xex+xex+e2x=3ex2e2x+xexy(x)=(x+3)ex2e2x

Leave a Reply

Your email address will not be published. Required fields are marked *