Menu Close

solve-by-Laplace-transform-y-5y-2y-x-2-cosx-with-y-o-1-and-y-0-2-




Question Number 95212 by mathmax by abdo last updated on 24/May/20
solve by Laplace transform  y^(′′)  +5y^′  +2y =x^2 cosx  with y(o)=1 and y^′ (0) =2
solvebyLaplacetransformy+5y+2y=x2cosxwithy(o)=1andy(0)=2
Answered by mathmax by abdo last updated on 24/May/20
(e) ⇒L(y^(′′) )+5L(y^′ )+2L(y) =L(x^2  cosx) ⇒  x^2 L(y)−xy(0)−y^′ (0) +5(xL(y)−y(0))+2L(y)=L(x^2  cosx) ⇒  (x^2  +5x+2)L(y) −x−2−5 =L(x^2  cosx)  but  L(x^2  cosx) =∫_0 ^∞  t^2  cost e^(−xt)  dt =Re( ∫_0 ^∞  t^2  e^(−xt+it) dt)  =Re(∫_0 ^∞  t^2  e^((−x+i)t)  dt)  by parts  ∫_0 ^∞  t^2  e^((−x+i)t)  dt =[(t^2 /(−x+i)) e^((−x+i)t) ]_0 ^∞  −∫_0 ^∞ ((2t)/((−x+i)))e^((−x+i)t) [dt  =(2/(x−i)) ∫_0 ^∞  t e^((−x+i)t)  dt =(2/(x−i)){ [(t/(−x+i))e^((−x+i)t) ]_0 ^∞ −∫_0 ^∞  (1/(−x+i))e^((−x+i)t)  dt  =(2/(x−i)){ (1/(x−i))[(1/(−x+i))e^((−x+i)t) ]_0 ^∞ } =−(2/((x−i)^3 )){−1} =(2/((x−i)^3 ))  =((2(x+i)^3 )/((x^2 +1)^3 )) =((2(  x^3  −3x +3ix^2 −i^3 ))/((x^2  +1)^3 )) ⇒Re(∫....) =((2x^3 −6x)/((x^2  +1)^3 ))  (e) ⇒(x^2  +5x+2)L(y) =x+7 +((2x^3 −6x)/((x^2  +1)^3 )) ⇒  L(y) =((x+7)/(x^2  +5x+2)) +((2x^3 −6x)/((x^2  +5x+2)(x^2  +1)^3 )) ⇒  y =L^(−1) (((x+7)/(x^2  +5x+2))) +L^(−1) (((2x^3 −6x)/((x^2  +5x+2)(x^2  +1)^3 )))  rest decomposition of those fractions ...be continued...
(e)L(y)+5L(y)+2L(y)=L(x2cosx)x2L(y)xy(0)y(0)+5(xL(y)y(0))+2L(y)=L(x2cosx)(x2+5x+2)L(y)x25=L(x2cosx)butL(x2cosx)=0t2costextdt=Re(0t2ext+itdt)=Re(0t2e(x+i)tdt)byparts0t2e(x+i)tdt=[t2x+ie(x+i)t]002t(x+i)e(x+i)t[dt=2xi0te(x+i)tdt=2xi{[tx+ie(x+i)t]001x+ie(x+i)tdt=2xi{1xi[1x+ie(x+i)t]0}=2(xi)3{1}=2(xi)3=2(x+i)3(x2+1)3=2(x33x+3ix2i3)(x2+1)3Re(.)=2x36x(x2+1)3(e)(x2+5x+2)L(y)=x+7+2x36x(x2+1)3L(y)=x+7x2+5x+2+2x36x(x2+5x+2)(x2+1)3y=L1(x+7x2+5x+2)+L1(2x36x(x2+5x+2)(x2+1)3)restdecompositionofthosefractionsbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *