Question Number 96886 by M±th+et+s last updated on 05/Jun/20
$${solve}\:{by}\:{using}\:{trapezoidal}\:{rule}\:{h}=\mathrm{0}.\mathrm{2} \\ $$$${and}\:{e}=\mathrm{2}.\mathrm{718} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}.\mathrm{2}} \frac{{e}^{{x}^{\mathrm{2}} } }{{x}}{dx} \\ $$
Commented by PRITHWISH SEN 2 last updated on 05/Jun/20
$$\mathrm{welcome} \\ $$
Commented by PRITHWISH SEN 2 last updated on 05/Jun/20
$$\frac{\boldsymbol{\mathrm{h}}}{\mathrm{2}}\left\{\left(\boldsymbol{\mathrm{y}}_{\mathrm{0}} +\boldsymbol{\mathrm{y}}_{\mathrm{6}} \right)+\mathrm{2}\left(\boldsymbol{\mathrm{y}}_{\mathrm{1}} +\boldsymbol{\mathrm{y}}_{\mathrm{2}} +\boldsymbol{\mathrm{y}}_{\mathrm{3}} +\boldsymbol{\mathrm{y}}_{\mathrm{4}} +\boldsymbol{\mathrm{y}}_{\mathrm{5}} \right\}=\mathrm{17}.\mathrm{6443}\right. \\ $$$$\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{check}} \\ $$
Commented by M±th+et+s last updated on 05/Jun/20
$${god}\:{bless}\:{you}\:{sir} \\ $$