Menu Close

Solve-C-x-y-C-x-y-1-4C-x-y-5C-x-y-1-or-C-n-k-n-k-n-k-




Question Number 170833 by LEKOUMA last updated on 01/Jun/22
Solve    { ((C_x ^y =C_x ^(y+1) )),((4C_x ^y =5C_x ^(y−1) )) :} or C_n ^k =((n!)/(k!(n−k)!))
$${Solve}\: \\ $$$$\begin{cases}{{C}_{{x}} ^{{y}} ={C}_{{x}} ^{{y}+\mathrm{1}} }\\{\mathrm{4}{C}_{{x}} ^{{y}} =\mathrm{5}{C}_{{x}} ^{{y}−\mathrm{1}} }\end{cases}\:{or}\:{C}_{{n}} ^{{k}} =\frac{{n}!}{{k}!\left({n}−{k}\right)!} \\ $$
Answered by aleks041103 last updated on 04/Jun/22
C_x ^y =C_x ^(y+1)   ((x!)/(y!(x−y)!))=((x!)/((y+1)!(x−y−1)!))  (((y+1)!)/(y!))=(((x−y)!)/((x−y−1)!))  y+1=x−y  x−2y=1⇒x=1+2y  4C_x ^y =5C_x ^(y−1)   4((x!)/(y!(x−y)!))=5((x!)/((y−1)!(x−y+1)!))  4(((x−y+1)!)/((x−y)!))=5((y!)/((y−1)!))  4(x−y+1)=5y  9y−4x=1    ⇒9y−4(1+2y)=1  9y−4−8y=1  y=5⇒x=11
$${C}_{{x}} ^{{y}} ={C}_{{x}} ^{{y}+\mathrm{1}} \\ $$$$\frac{{x}!}{{y}!\left({x}−{y}\right)!}=\frac{{x}!}{\left({y}+\mathrm{1}\right)!\left({x}−{y}−\mathrm{1}\right)!} \\ $$$$\frac{\left({y}+\mathrm{1}\right)!}{{y}!}=\frac{\left({x}−{y}\right)!}{\left({x}−{y}−\mathrm{1}\right)!} \\ $$$${y}+\mathrm{1}={x}−{y} \\ $$$${x}−\mathrm{2}{y}=\mathrm{1}\Rightarrow{x}=\mathrm{1}+\mathrm{2}{y} \\ $$$$\mathrm{4}{C}_{{x}} ^{{y}} =\mathrm{5}{C}_{{x}} ^{{y}−\mathrm{1}} \\ $$$$\mathrm{4}\frac{{x}!}{{y}!\left({x}−{y}\right)!}=\mathrm{5}\frac{{x}!}{\left({y}−\mathrm{1}\right)!\left({x}−{y}+\mathrm{1}\right)!} \\ $$$$\mathrm{4}\frac{\left({x}−{y}+\mathrm{1}\right)!}{\left({x}−{y}\right)!}=\mathrm{5}\frac{{y}!}{\left({y}−\mathrm{1}\right)!} \\ $$$$\mathrm{4}\left({x}−{y}+\mathrm{1}\right)=\mathrm{5}{y} \\ $$$$\mathrm{9}{y}−\mathrm{4}{x}=\mathrm{1} \\ $$$$ \\ $$$$\Rightarrow\mathrm{9}{y}−\mathrm{4}\left(\mathrm{1}+\mathrm{2}{y}\right)=\mathrm{1} \\ $$$$\mathrm{9}{y}−\mathrm{4}−\mathrm{8}{y}=\mathrm{1} \\ $$$${y}=\mathrm{5}\Rightarrow{x}=\mathrm{11} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *