Menu Close

solve-Cauchy-s-problem-x-t-x-2-1-x-2-R-x-0-0-




Question Number 61107 by arcana last updated on 29/May/19
solve Cauchy′s problem  x′= t + (((μx)^2 )/(1+(μx)^2 )), μ∈R  x(0)=0
$${solve}\:{Cauchy}'{s}\:{problem} \\ $$$${x}'=\:{t}\:+\:\frac{\left(\mu{x}\right)^{\mathrm{2}} }{\mathrm{1}+\left(\mu{x}\right)^{\mathrm{2}} },\:\mu\in\mathbb{R} \\ $$$${x}\left(\mathrm{0}\right)=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *