Menu Close

Solve-clairaut-s-equation-and-find-general-and-singular-solution-i-y-px-p-n-ii-y-1-p-xp-2-2-0-




Question Number 91812 by niroj last updated on 03/May/20
 Solve clairaut′s equation and find   general and singular solution:  (i) y=px+p^n    (ii) (y+1)p−xp^2 +2=0
$$\:\mathrm{Solve}\:\mathrm{clairaut}'\mathrm{s}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{find} \\ $$$$\:\mathrm{general}\:\mathrm{and}\:\mathrm{singular}\:\mathrm{solution}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{y}=\mathrm{px}+\mathrm{p}^{\mathrm{n}} \\ $$$$\:\left(\mathrm{ii}\right)\:\left(\mathrm{y}+\mathrm{1}\right)\mathrm{p}−\mathrm{xp}^{\mathrm{2}} +\mathrm{2}=\mathrm{0} \\ $$$$ \\ $$$$ \\ $$
Commented by john santu last updated on 03/May/20
(1)put xy=Y ; x=X  x(dy/dx)+y = (dY/dx) = P ; dx = dX  y+px = P , where p=(dy/dx)  ⇒y=px+p^n   y= P−y−p^n ⇒2y=P−p^n   (Y/x)=P−(((P−y)/x))^n   Y=Px−(((P−(Y/x))^n )/x^(n−1) )  continue...
$$\left(\mathrm{1}\right){put}\:{xy}={Y}\:;\:{x}={X} \\ $$$${x}\frac{{dy}}{{dx}}+{y}\:=\:\frac{{dY}}{{dx}}\:=\:{P}\:;\:{dx}\:=\:{dX} \\ $$$${y}+{px}\:=\:{P}\:,\:{where}\:{p}=\frac{{dy}}{{dx}} \\ $$$$\Rightarrow{y}={px}+{p}^{{n}} \\ $$$${y}=\:{P}−{y}−{p}^{{n}} \Rightarrow\mathrm{2}{y}={P}−{p}^{{n}} \\ $$$$\frac{{Y}}{{x}}={P}−\left(\frac{{P}−{y}}{{x}}\right)^{{n}} \\ $$$${Y}={Px}−\frac{\left({P}−\frac{{Y}}{{x}}\right)^{{n}} }{{x}^{{n}−\mathrm{1}} } \\ $$$${continue}… \\ $$
Commented by john santu last updated on 03/May/20
����

Leave a Reply

Your email address will not be published. Required fields are marked *