Menu Close

solve-D-2-2D-1-y-e-x-ln-x-by-using-the-method-of-variation-of-parameters-




Question Number 119065 by benjo_mathlover last updated on 21/Oct/20
solve (D^2 −2D+1)y = e^x  ln x   by using the method of variation  of parameters.
solve(D22D+1)y=exlnxbyusingthemethodofvariationofparameters.
Answered by Olaf last updated on 22/Oct/20
y = e^x u  y′ = (u′+u)e^x   y′′ = (u′′+2u′+u)e^x     u′′+2u′+u−2(u′+u)+u = lnx  u′′ = lnx  u′ = ∫lnxdx = xlnx−x+C_1   u = ∫(xlnx−x+C_1 )dx  u = (x^2 /2)lnx−∫(x^2 /2).(1/x)dx−(x^2 /2)+C_1 x+C_2   u = (x^2 /2)lnx−(x^2 /4)−(x^2 /2)+C_1 x+C_2   u = (x^2 /2)lnx−((3x^2 )/4)+C_1 x+C_2   y = ((x^2 /2)lnx−((3x^2 )/4)+C_1 x+C_2 )e^x
y=exuy=(u+u)exy=(u+2u+u)exu+2u+u2(u+u)+u=lnxu=lnxu=lnxdx=xlnxx+C1u=(xlnxx+C1)dxu=x22lnxx22.1xdxx22+C1x+C2u=x22lnxx24x22+C1x+C2u=x22lnx3x24+C1x+C2y=(x22lnx3x24+C1x+C2)ex
Commented by benjo_mathlover last updated on 22/Oct/20
thank you
thankyou
Answered by john santu last updated on 27/Oct/20
For the homogenous solution we solve the   characteristic equation  λ^2 −2λ+1 = 0 , which has a double root λ=1  hence the homogenous solution can be   written as y_h  = (C_1 +C_2 x)e^x   using the homogenous solution we   can now begin using variation of  parameters method   let y_p  = u.e^x  + v.xe^x   Differentiating yields   y ′ = (ue^x +u′e^x )+(v.(x+1)e^x +v′.xe^x )  set u′e^x  + v′xe^x  = 0 or u′+xv′ = 0  we get y′ = ue^x +v.(x+1)e^x   Differentiating again gives   y′′ = ue^x +u′e^x +v(x+2)e^x +v′(x+1)e^x   substituting into the original   differential equation   (ue^x +u′e^x +v(x+2)e^x +v′(x+1)e^x )−  2(ue^x +v(x+1)e^x ) + (ue^x +v.xe^x ) = e^x .ln x  this reduces to   u′+(x+1)v′ = ln x  now we have two equation in u′ and v′   { ((u′+xv′ = 0)),((u′+(x+1)v′ = ln x)) :}   (((1     x)),((1   x+1)) )  (((u′)),((v′)) ) =  (((   0)),((ln x)) )  → { ((u′ = −x ln x)),((v′ = ln x)) :}  integrating with by parts gives   { ((u = −(1/2)x^2 ln x + (1/4)x^(2 ) )),((v = x ln x−x )) :}  thus particular solution equal to  y_p  = −(1/2)x^2  e^x  ln x + (1/4)x^2  e^x           + x^2  e^x  ln x −x^2 e^x    y_p  = (1/2)x^2  e^x  ln x −(3/4)x^2 e^x   Therefore we conclude that a general  solution y = y_h  + y_p   y = (C_1 +C_2 x)e^x + (1/4)(2ln x−3)x^2 e^x
Forthehomogenoussolutionwesolvethecharacteristicequationλ22λ+1=0,whichhasadoublerootλ=1hencethehomogenoussolutioncanbewrittenasyh=(C1+C2x)exusingthehomogenoussolutionwecannowbeginusingvariationofparametersmethodletyp=u.ex+v.xexDifferentiatingyieldsy=(uex+uex)+(v.(x+1)ex+v.xex)setuex+vxex=0oru+xv=0wegety=uex+v.(x+1)exDifferentiatingagaingivesy=uex+uex+v(x+2)ex+v(x+1)exsubstitutingintotheoriginaldifferentialequation(uex+uex+v(x+2)ex+v(x+1)ex)2(uex+v(x+1)ex)+(uex+v.xex)=ex.lnxthisreducestou+(x+1)v=lnxnowwehavetwoequationinuandv{u+xv=0u+(x+1)v=lnx(1x1x+1)(uv)=(0lnx){u=xlnxv=lnxintegratingwithbypartsgives{u=12x2lnx+14x2v=xlnxxthusparticularsolutionequaltoyp=12x2exlnx+14x2ex+x2exlnxx2exyp=12x2exlnx34x2exThereforeweconcludethatageneralsolutiony=yh+ypy=(C1+C2x)ex+14(2lnx3)x2ex
Answered by TANMAY PANACEA last updated on 22/Oct/20
P.I=((e^x lnx)/((D−1)^2 ))=e^x ×(1/((D+1−1)^2 ))×lnx  =(e^x /1)×((lnx)/D^2 )  (1/D)×lnx=xlnx−x  (1/D^2 )lnx=∫(xlnx−x)dx  =lnx×(x^2 /2)−∫(1/x)×(x^2 /2)dx−(x^2 /2)  =((x^2 lnx)/2)−(x^2 /4)−(x^2 /2)  =(x^2 /2)(lnx−(1/2)−1)=(x^2 /2)(((−3)/2)+lnx)  snsser  ((e^x ×x^2 )/2)o(((−3)/2)+lnx)
P.I=exlnx(D1)2=ex×1(D+11)2×lnx=ex1×lnxD21D×lnx=xlnxx1D2lnx=(xlnxx)dx=lnx×x221x×x22dxx22=x2lnx2x24x22=x22(lnx121)=x22(32+lnx)snsserex×x22o(32+lnx)

Leave a Reply

Your email address will not be published. Required fields are marked *