solve-D-2-a-y-tan-ax- Tinku Tara June 4, 2023 Differential Equation 0 Comments FacebookTweetPin Question Number 126683 by bramlexs22 last updated on 23/Dec/20 solve(D2+a)y=tanax Answered by liberty last updated on 23/Dec/20 (1)Homogenoussolutionyh=Acosax+Bsinax(2)Particularsolutiony1=cosax→y1′=−asinaxy2=sinax→y2′=acosaxWronskianW(y1,y2)=|cosaxsinax−asinaxacosax|=aputu=−∫y2g(x)Wdx=−∫sinaxtanaxadx=1a2(sinax−ln∣secax+tanax∣)putv=∫y1g(x)Wdx=∫cosaxtanaxadx=−cosaxa2yp=uy1+vy2=−1a2cosaxln∣secax+tanax∣(3)yg=Acosax+Bsinax−cosaxln∣secax+tanax∣a2 Answered by mathmax by abdo last updated on 24/Dec/20 y″+ay=tanxh→r2+a=0case1a>0⇒r2=−a⇒r=+−−a=+−ia⇒yh=aeiax+be−iax=αcos(ax)+βsin(ax)=αu1+βu2w(u1,u2)=|cos(ax)sin(ax)−asin(ax)acos(ax)|=aw1=|osin(ax)tan(ax)acos(ax)|=−sin(ax)tan(ax))w2=|cos(ax)0−asin(ax)tan(ax)|=cos(ax)tan(ax)v1=∫w1wdx=−∫sin(ax)tan(ax)adx=−1a∫sin(ax)tan(ax)dxv2=∫w2wdx=∫cos(ax)tan(ax)adx⇒yp=u1v1+u2v2=−1acos(ax)∫sin(ax)tan(ax)dx+1asin(ax)∫cos(ax)tan(ax)dx⇒generalsolutionisy=yp+hhcase2<0r2+a=0⇒r2=−a⇒r=+−a⇒yh=aeax+be−ax=au1+bu2andwefollowthesameway… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-61142Next Next post: prove-1-cos-x-1-cos-x-dx-2cot-x-2-x-c- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.