Menu Close

solve-D-2-a-y-tan-ax-




Question Number 126683 by bramlexs22 last updated on 23/Dec/20
 solve (D^2 +a)y = tan ax
solve(D2+a)y=tanax
Answered by liberty last updated on 23/Dec/20
(1) Homogenous solution   y_h = A cos ax + B sin ax   (2) Particular solution    y_1 = cos ax →y_1 ′=−a sin ax   y_2 = sin ax →y_2 ′= a cos ax   Wronskian W(y_1 ,y_2 )= determinant (((cos ax        sin ax)),((−asin ax   acos ax)))= a  put u = −∫ ((y_2 g(x))/W) dx =−∫ ((sin ax tan ax)/a) dx              =(1/a^2 )(sin ax−ln ∣sec ax+tan ax∣)  put v = ∫ ((y_1 g(x))/W) dx = ∫ ((cos ax tan ax)/a) dx             = −((cos ax)/a^2 )  y_p = uy_1 +vy_2 = −(1/a^2 )cos ax ln ∣sec ax + tan ax∣  (3)y_g = A cos ax + B sin ax −((cos ax ln ∣sec ax+tan ax∣)/a^2 )
(1)Homogenoussolutionyh=Acosax+Bsinax(2)Particularsolutiony1=cosaxy1=asinaxy2=sinaxy2=acosaxWronskianW(y1,y2)=|cosaxsinaxasinaxacosax|=aputu=y2g(x)Wdx=sinaxtanaxadx=1a2(sinaxlnsecax+tanax)putv=y1g(x)Wdx=cosaxtanaxadx=cosaxa2yp=uy1+vy2=1a2cosaxlnsecax+tanax(3)yg=Acosax+Bsinaxcosaxlnsecax+tanaxa2
Answered by mathmax by abdo last updated on 24/Dec/20
y^(′′)  +ay =tanx  h→r^2  +a=0  case 1  a>0 ⇒r^2  =−a ⇒r=+^− (√(−a))=+^− i(√a) ⇒  y_h =ae^(i(√a)x)  +be^(−i(√a)x)  =αcos((√a)x)+βsin((√a)x)=αu_1  +βu_2   w(u_1 ,u_2 )= determinant (((cos((√a)x)       sin((√a)x))),((−(√a)sin((√a)x)    (√a)cos((√a)x))))=(√a)  w_1 = determinant (((o       sin((√a)x))),((tan(ax)   (√a)cos((√a)x))))=−sin((√a)x)tan(ax))  w_2 = determinant (((cos((√a)x)         0)),((−(√a)sin((√a)x)  tan(ax))))=cos((√a)x)tan(ax)  v_1 =∫ (w_1 /w)dx =−∫ ((sin((√a)x)tan(ax))/( (√a)))dx =−(1/( (√a)))∫ sin((√a)x)tan(ax)dx  v_2 =∫ (w_2 /w)dx =∫ ((cos((√a)x)tan(ax))/( (√a)))dx  ⇒y_p =u_1 v_1 +u_2 v_2 =−(1/( (√a)))cos((√a)x)∫ sin((√a)x)tan(ax)dx  +(1/( (√a)))sin((√a)x)∫  cos((√a)x)tan(ax)dx ⇒  general solution is y =y_p  +h_h   case 2  <0  r^2  +a=0 ⇒r^2  =−a ⇒r=+^− (√a) ⇒  y_h =a e^((√a)x)  +be^(−(√a)x)       =au_1  +bu_2   and we follow the same way...
y+ay=tanxhr2+a=0case1a>0r2=ar=+a=+iayh=aeiax+beiax=αcos(ax)+βsin(ax)=αu1+βu2w(u1,u2)=|cos(ax)sin(ax)asin(ax)acos(ax)|=aw1=|osin(ax)tan(ax)acos(ax)|=sin(ax)tan(ax))w2=|cos(ax)0asin(ax)tan(ax)|=cos(ax)tan(ax)v1=w1wdx=sin(ax)tan(ax)adx=1asin(ax)tan(ax)dxv2=w2wdx=cos(ax)tan(ax)adxyp=u1v1+u2v2=1acos(ax)sin(ax)tan(ax)dx+1asin(ax)cos(ax)tan(ax)dxgeneralsolutionisy=yp+hhcase2<0r2+a=0r2=ar=+ayh=aeax+beax=au1+bu2andwefollowthesameway

Leave a Reply

Your email address will not be published. Required fields are marked *