Menu Close

solve-d-2-x-dt-2-cosx-




Question Number 144930 by alcohol last updated on 30/Jun/21
solve  (d^2 x/dt^2 )=cosx
$${solve} \\ $$$$\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }={cosx} \\ $$
Answered by ArielVyny last updated on 30/Jun/21
−cosx
$$−{cosx} \\ $$
Answered by mr W last updated on 01/Jul/21
u=(dx/dt)  (d^2 x/dt^2 )=(du/dt)=u(du/dx)=cos x  (u^2 /2)=sin x+C  u=(dx/dt)=±(√(2(sin x+C)))  (dx/( (√(sin x+C))))=±(√2)dt  ∫(dx/( (√(sin x+C))))=±(√2)∫dt  (dx/( (√(sin x+C))))=±(√2)t+C_1
$${u}=\frac{{dx}}{{dt}} \\ $$$$\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }=\frac{{du}}{{dt}}={u}\frac{{du}}{{dx}}=\mathrm{cos}\:{x} \\ $$$$\frac{{u}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{sin}\:{x}+{C} \\ $$$${u}=\frac{{dx}}{{dt}}=\pm\sqrt{\mathrm{2}\left(\mathrm{sin}\:{x}+{C}\right)} \\ $$$$\frac{{dx}}{\:\sqrt{\mathrm{sin}\:{x}+{C}}}=\pm\sqrt{\mathrm{2}}{dt} \\ $$$$\int\frac{{dx}}{\:\sqrt{\mathrm{sin}\:{x}+{C}}}=\pm\sqrt{\mathrm{2}}\int{dt} \\ $$$$\frac{{dx}}{\:\sqrt{\mathrm{sin}\:{x}+{C}}}=\pm\sqrt{\mathrm{2}}{t}+{C}_{\mathrm{1}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *