Menu Close

solve-diff-equation-x-2-y-xy-y-5x-2-x-gt-0-




Question Number 90952 by jagoll last updated on 27/Apr/20
  solve diff equation   x^2 y′′ + xy′ +y = 5x^2   x >0
$$ \\ $$$${solve}\:{diff}\:{equation}\: \\ $$$${x}^{\mathrm{2}} {y}''\:+\:{xy}'\:+{y}\:=\:\mathrm{5}{x}^{\mathrm{2}} \:\:{x}\:>\mathrm{0} \\ $$
Answered by MWSuSon last updated on 27/Apr/20
let x=e^z   x^2 y′′=D(D−1)y  xy′=Dy  (D^2 +1)y=5e^(2z)   Auxillary equation  m^2 +1=0  m=±i  y_c =C_1 Cos(z)+C_2 Sin(z)  y_p =5(1/(D^2 +1))e^(2z)   y_p =5(1/5)e^(2z)   y_p =e^(2z)   y=C_1 Cos(log_e x)+C_2 Sin(log_e x)+x^2   we can see that x cannot be −ve.
$${let}\:{x}={e}^{{z}} \\ $$$${x}^{\mathrm{2}} {y}''={D}\left({D}−\mathrm{1}\right){y} \\ $$$${xy}'={Dy} \\ $$$$\left({D}^{\mathrm{2}} +\mathrm{1}\right){y}=\mathrm{5}{e}^{\mathrm{2}{z}} \\ $$$${Auxillary}\:{equation} \\ $$$${m}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$${m}=\pm{i} \\ $$$${y}_{{c}} ={C}_{\mathrm{1}} {Cos}\left({z}\right)+{C}_{\mathrm{2}} {Sin}\left({z}\right) \\ $$$${y}_{{p}} =\mathrm{5}\frac{\mathrm{1}}{{D}^{\mathrm{2}} +\mathrm{1}}{e}^{\mathrm{2}{z}} \\ $$$${y}_{{p}} =\mathrm{5}\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{2}{z}} \\ $$$${y}_{{p}} ={e}^{\mathrm{2}{z}} \\ $$$${y}={C}_{\mathrm{1}} {Cos}\left({log}_{{e}} {x}\right)+{C}_{\mathrm{2}} {Sin}\left({log}_{{e}} {x}\right)+{x}^{\mathrm{2}} \\ $$$${we}\:{can}\:{see}\:{that}\:{x}\:{cannot}\:{be}\:−{ve}. \\ $$
Commented by jagoll last updated on 27/Apr/20
sir. where does form D(D−1)y ?
$${sir}.\:{where}\:{does}\:{form}\:{D}\left({D}−\mathrm{1}\right){y}\:? \\ $$
Commented by MWSuSon last updated on 27/Apr/20
your question is a Cauchy Euler   D.E, while deriving a way to solve  the equation we ended up having  x(dy/dx)=Dy, x^2 (d^2 y/dx^2 )=D(D−1)y, x^3 (d^3 y/dx^3 )=D(D−1)(D−2)y...  D≡(d/dz). all this is gotten from making  x=e^z .
$${your}\:{question}\:{is}\:{a}\:{Cauchy}\:{Euler}\: \\ $$$${D}.{E},\:{while}\:{deriving}\:{a}\:{way}\:{to}\:{solve} \\ $$$${the}\:{equation}\:{we}\:{ended}\:{up}\:{having} \\ $$$${x}\frac{{dy}}{{dx}}={Dy},\:{x}^{\mathrm{2}} \frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }={D}\left({D}−\mathrm{1}\right){y},\:{x}^{\mathrm{3}} \frac{{d}^{\mathrm{3}} {y}}{{dx}^{\mathrm{3}} }={D}\left({D}−\mathrm{1}\right)\left({D}−\mathrm{2}\right){y}… \\ $$$${D}\equiv\frac{{d}}{{dz}}.\:{all}\:{this}\:{is}\:{gotten}\:{from}\:{making} \\ $$$${x}={e}^{{z}} . \\ $$
Commented by jagoll last updated on 27/Apr/20
z is complex number sir?
$${z}\:{is}\:{complex}\:{number}\:{sir}? \\ $$
Commented by MWSuSon last updated on 27/Apr/20
no it is not a complex number.
$${no}\:{it}\:{is}\:{not}\:{a}\:{complex}\:{number}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *