Menu Close

Solve-differential-equation-the-method-of-variation-of-parameters-d-2-y-dx-2-4y-4-cosec-2x-




Question Number 112740 by Mr.D.N. last updated on 09/Sep/20
 Solve differential equation the method of   variation of parameters:    (d^2 y/dx^2 ) +4y =4 cosec 2x
Solvedifferentialequationthemethodofvariationofparameters:d2ydx2+4y=4cosec2x
Answered by mathmax by abdo last updated on 09/Sep/20
y^(′′)  +4y =(4/(sin(2x)))  h→r^2 +4=0 ⇒r =+^− 2i  ⇒y_h =ae^(2ix)  +be^(−2ix)  =α cos(2x) +βsin(2x)  =αu_1  +βu_2   W(u_1 ,u_2 )= determinant (((cos(2x)         sin(2x))),((−2sin2x       2cos(2x) )))=2(cos^2 2x +sin^2 (2x))=2≠0  W_1 = determinant (((0          sin(2x))),(((4/(sin(2x)))      2cos(2x))))=−4  W_2 = determinant (((cos(2x)           0)),((−2sin(2x)     (4/(sin(2x))))))=4cotan(2x)  V_1 =∫  (W_1 /W) dx =∫  ((−4)/2) dx =−2x  V_2 =∫  (W_2 /W) dx =∫  ((4cotan(2x))/2) dx =2 ∫  ((cos(2x))/(sin(2x))) dx =ln(∣sin(2x)∣)  ⇒y_p =u_1 v_1 +u_2 v_2 =cos(2x)(−2x)+sin(2x) ln∣sin(2x)∣  the general solution is y =y_h +y_p   y =αcos(2x) +β sin(2x)−2x cos(2x)+sin(2x)ln∣sin(2x)∣
y+4y=4sin(2x)hr2+4=0r=+2iyh=ae2ix+be2ix=αcos(2x)+βsin(2x)=αu1+βu2W(u1,u2)=|cos(2x)sin(2x)2sin2x2cos(2x)|=2(cos22x+sin2(2x))=20W1=|0sin(2x)4sin(2x)2cos(2x)|=4W2=|cos(2x)02sin(2x)4sin(2x)|=4cotan(2x)V1=W1Wdx=42dx=2xV2=W2Wdx=4cotan(2x)2dx=2cos(2x)sin(2x)dx=ln(sin(2x))yp=u1v1+u2v2=cos(2x)(2x)+sin(2x)lnsin(2x)thegeneralsolutionisy=yh+ypy=αcos(2x)+βsin(2x)2xcos(2x)+sin(2x)lnsin(2x)

Leave a Reply

Your email address will not be published. Required fields are marked *