Question Number 17323 by tawa tawa last updated on 04/Jul/17

Answered by Tinkutara last updated on 04/Jul/17

Commented by tawa tawa last updated on 04/Jul/17

Answered by mrW1 last updated on 04/Jul/17
![(3−2y)dy=2cos (2x)dx ∫(3−2y)dy=2∫cos (2x)dx −(1/2)∫(3−2y)d(3−2y)=∫cos (2x)d(2x) −(1/4)(3−2y)^2 =sin (2x)+C y(0)=−1 −(1/4)(3+2)^2 =C C=−((25)/4) ((25)/4)−(1/4)(3−2y)^2 =sin (2x) [5^2 −(3−2y)^2 ]=sin (2x) (5−3+2y)(5+3−2y)=sin (2x) 4(1+y)(4−y)=sin (2x) 4(((25)/4)+−(9/4)+3y−y^2 )=sin (2x) 25−4(y−(3/2))^2 =sin (2x) (y−(3/2))^2 =((25−sin (2x))/4) y=(1/2)[3±5(√(1−((sin (2x))/(25))))] (a)for x∈R (b)y=maximum/minimum when sin (2x)=−1 or 2x=2kπ+((3π)/2) or x=kπ+((3π)/4)](https://www.tinkutara.com/question/Q17331.png)
Commented by tawa tawa last updated on 04/Jul/17

Commented by 1234Hello last updated on 04/Jul/17

Commented by Tinkutara last updated on 04/Jul/17

Commented by mrW1 last updated on 04/Jul/17
