Question Number 181331 by Mastermind last updated on 24/Nov/22
$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}} \left(\mathrm{sinx}\right)\left(\mathrm{y}+\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{y}\left(\mathrm{2}\right)=−\mathrm{1} \\ $$$$ \\ $$$$. \\ $$
Answered by FelipeLz last updated on 24/Nov/22
$$\frac{{dy}}{{dx}}\:=\:{e}^{{x}} \mathrm{sin}\left({x}\right)\left({y}+\mathrm{1}\right) \\ $$$$\frac{\mathrm{1}}{{y}+\mathrm{1}}{dy}\:=\:{e}^{{x}} \mathrm{sin}\left({x}\right){dx} \\ $$$$\int\frac{\mathrm{1}}{{y}+\mathrm{1}}{dy}\:=\:\int{e}^{{x}} \mathrm{sin}\left({x}\right){dx} \\ $$$$\mathrm{ln}\mid{y}+\mathrm{1}\mid+{c}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} \left[\mathrm{sin}\left({x}\right)−\mathrm{cos}\left({x}\right)\right]+{c}_{\mathrm{2}} \\ $$$$\mathrm{ln}\mid{y}+\mathrm{1}\mid\:=\:\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} \left[\mathrm{sin}\left({x}\right)−\mathrm{cos}\left({x}\right)\right]+{c}_{\mathrm{2}} −{c}_{\mathrm{1}} \\ $$$${c}_{\mathrm{2}} −{c}_{\mathrm{1}} \:=\:{c}_{\mathrm{3}} \:\rightarrow\:\mathrm{ln}\mid{y}+\mathrm{1}\mid\:=\:\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} \left[\mathrm{sin}\left({x}\right)−\mathrm{cos}\left({x}\right)\right]+{c}_{\mathrm{3}} \\ $$$${y}+\mathrm{1}\:=\:{e}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} \left[\mathrm{sin}\left({x}\right)−\mathrm{cos}\left({x}\right)\right]+{c}_{\mathrm{3}} } \\ $$$${e}^{{c}_{\mathrm{3}} } \:=\:{C}\:\rightarrow\:{y}+\mathrm{1}\:=\:{Ce}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} \left[\mathrm{sin}\left({x}\right)−\mathrm{cos}\left({x}\right)\right]} \\ $$$${y}\left({x}\right)\:=\:{Ce}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{{x}} \left[\mathrm{sin}\left({x}\right)−\mathrm{cos}\left({x}\right)\right]} −\mathrm{1} \\ $$$${y}\left(\mathrm{2}\right)\:=\:−\mathrm{1}\:\rightarrow\:{Ce}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}} \left[\mathrm{sin}\left(\mathrm{2}\right)−\mathrm{cos}\left(\mathrm{2}\right)\right]} −\mathrm{1}\:=\:−\mathrm{1}\: \\ $$$${Ce}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}} \left[\mathrm{sin}\left(\mathrm{2}\right)−\mathrm{cos}\left(\mathrm{2}\right)\right]} −\mathrm{1}\:=\:−\mathrm{1} \\ $$$${Ce}^{\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}} \left[\mathrm{sin}\left(\mathrm{2}\right)−\mathrm{cos}\left(\mathrm{2}\right)\right]} \:=\:\mathrm{0} \\ $$$${e}^{{t}} \:\neq\:\mathrm{0}\:\forall{t}\:\rightarrow\:{C}\:=\:\mathrm{0} \\ $$$${y}\left({x}\right)\:=\:−\mathrm{1} \\ $$