Menu Close

Solve-dy-dx-sin-y-x-sin-2y-xcos-y-




Question Number 40397 by rahul 19 last updated on 21/Jul/18
Solve :  (dy/dx) = ((sin y + x)/(sin 2y − xcos y)) .
$$\mathrm{Solve}\:: \\ $$$$\frac{\mathrm{dy}}{{dx}}\:=\:\frac{\mathrm{sin}\:{y}\:+\:{x}}{\mathrm{sin}\:\mathrm{2}{y}\:−\:{x}\mathrm{cos}\:{y}}\:. \\ $$
Answered by ajfour last updated on 21/Jul/18
cos y((dy/dx)) = ((x+sin y)/(2sin y−x))  let  sin y=t  ⇒  (cos y)(dy/dx)=(dt/dx)  So    (dt/dx) = ((x+t)/(2t−x))  ⇒   2tdt−xdt=xdx+tdx          2tdt−xdx = d(tx)  ⇒    t^2 −(x^2 /2) = tx+(c/2)         2sin^2 y−x^2 =2xsin y+c .
$$\mathrm{cos}\:{y}\left(\frac{{dy}}{{dx}}\right)\:=\:\frac{{x}+\mathrm{sin}\:{y}}{\mathrm{2sin}\:{y}−{x}} \\ $$$${let}\:\:\mathrm{sin}\:{y}={t} \\ $$$$\Rightarrow\:\:\left(\mathrm{cos}\:{y}\right)\frac{{dy}}{{dx}}=\frac{{dt}}{{dx}} \\ $$$${So}\:\:\:\:\frac{{dt}}{{dx}}\:=\:\frac{{x}+{t}}{\mathrm{2}{t}−{x}} \\ $$$$\Rightarrow\:\:\:\mathrm{2}{tdt}−{xdt}={xdx}+{tdx} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}{tdt}−{xdx}\:=\:{d}\left({tx}\right) \\ $$$$\Rightarrow\:\:\:\:{t}^{\mathrm{2}} −\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:=\:{tx}+\frac{{c}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\mathrm{2sin}\:^{\mathrm{2}} {y}−{x}^{\mathrm{2}} =\mathrm{2}{x}\mathrm{sin}\:{y}+{c}\:. \\ $$
Commented by rahul 19 last updated on 21/Jul/18
thank you sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *