Menu Close

Solve-dy-dx-xy-x-2-M-m-




Question Number 183038 by Mastermind last updated on 18/Dec/22
Solve  (dy/dx)+xy=x^2     M.m
$$\mathrm{Solve} \\ $$$$\frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{xy}=\mathrm{x}^{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{M}.\mathrm{m} \\ $$
Answered by TheSupreme last updated on 21/Dec/22
D(ye^(x^2 /2) )=x^2 e^(x^2 /2)   y e^(x^2 /2) =∫x^2 e^(x^2 /2) dx=(1/2)xe^(x^2 /2) −(1/2)∫e^(x^2 /2) dx  y=(1/2)x−(1/2)(√π)erfi(x)e^(−(x^2 /2)) +c
$${D}\left({ye}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \right)={x}^{\mathrm{2}} {e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} \\ $$$${y}\:{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} =\int{x}^{\mathrm{2}} {e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx}=\frac{\mathrm{1}}{\mathrm{2}}{xe}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} −\frac{\mathrm{1}}{\mathrm{2}}\int{e}^{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} {dx} \\ $$$${y}=\frac{\mathrm{1}}{\mathrm{2}}{x}−\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\pi}{erfi}\left({x}\right){e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}} +{c} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *