Menu Close

Solve-dy-dx-ysec-x-tan-x-




Question Number 17735 by tawa tawa last updated on 09/Jul/17
Solve:  (dy/dx) + ysec(x) = tan(x)
Solve:dydx+ysec(x)=tan(x)
Answered by alex041103 last updated on 10/Jul/17
So let′s find function μ(x) wich satisfies the followinv  (dy/dx)μ+P(x)μy=(d/dx)[yμ]  We know that  (d/dx)[yμ]=(dy/dx)μ+y(dμ/dx)  ⇒P(x)μ=(dμ/dx)  Now solving the saparable differential  equation  P(x) dx = (1/μ) dμ  ⇒∫P(x) dx = ∫(1/μ) dμ  or ln∣μ∣=∫P(x) dx (we won′t worry about the constant)  ⇒μ(x)=e^(∫P(x) dx)   Now we apply the μ(x) to solve the differential  equation we started with.  P(x)=sec x  ⇒μ(x)=e^(∫sec x dx)   We know the trivial result ∫sec x dx  =ln∣sec x + tan x∣ (+C)  ⇒μ(x)=sec x + tan x  ⇒tan x(sec x + tan x)=(d/dx)[y(sec x + tan x)]  ⇒y(x) = ((∫tan x sec x dx + ∫tan^2 x dx)/(sec x + tan x))  We solve the integrals an we get  y(x) = 1− ((x + C)/(sec x + tan x))
Soletsfindfunctionμ(x)wichsatisfiesthefollowinvdydxμ+P(x)μy=ddx[yμ]Weknowthatddx[yμ]=dydxμ+ydμdxP(x)μ=dμdxNowsolvingthesaparabledifferentialequationP(x)dx=1μdμP(x)dx=1μdμorlnμ∣=P(x)dx(wewontworryabouttheconstant)μ(x)=eP(x)dxNowweapplytheμ(x)tosolvethedifferentialequationwestartedwith.P(x)=secxμ(x)=esecxdxWeknowthetrivialresultsecxdx=lnsecx+tanx(+C)μ(x)=secx+tanxtanx(secx+tanx)=ddx[y(secx+tanx)]y(x)=tanxsecxdx+tan2xdxsecx+tanxWesolvetheintegralsanwegety(x)=1x+Csecx+tanx
Commented by alex041103 last updated on 10/Jul/17
∫tan(x)sec(x)dx=  =∫ ((sin(x))/(cos^2 (x)))dx  Let u=cos(x)⇒du=−sin(x)  ⇒∫tan(x)sec(x)dx=  =−∫u^(−2)  du=(1/u)+C=sec(x) + C
tan(x)sec(x)dx==sin(x)cos2(x)dxLetu=cos(x)du=sin(x)tan(x)sec(x)dx==u2du=1u+C=sec(x)+C
Commented by tawa tawa last updated on 10/Jul/17
Wow, God bless you sir.
Wow,Godblessyousir.
Commented by alex041103 last updated on 10/Jul/17
∫tan^2 (x) dx=  =∫(sec^2 (x) −1) dx  =∫sec^2 (x)dx − ∫dx  =tan(x) − x + C
tan2(x)dx==(sec2(x)1)dx=sec2(x)dxdx=tan(x)x+C

Leave a Reply

Your email address will not be published. Required fields are marked *