Menu Close

Solve-e-x-x-1-dx-ye-y-xe-x-dy-0-




Question Number 41378 by rahul 19 last updated on 06/Aug/18
Solve :  e^x (x+1)dx + (ye^y  − xe^x )dy=0
$$\mathrm{Solve}\:: \\ $$$$\mathrm{e}^{{x}} \left({x}+\mathrm{1}\right){dx}\:+\:\left(\mathrm{ye}^{\mathrm{y}} \:−\:{xe}^{{x}} \right)\mathrm{dy}=\mathrm{0} \\ $$
Commented by rahul 19 last updated on 06/Aug/18
If I put xe^x = t. does this helps?
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Aug/18
u=e^x x  du=e^x (x+1)dx  du+(ye^y −u)dy=0  du=(u−ye^y )dy  (du/dy)−u=−ye^y   intregating factor e^(∫−dy) =e^(−y)   e^(−y) (du/dy)+(−ue^(−y) )=−y  ((d(u.e^(−y) ))/dy)=−y  d(u.e^(−y) )=−ydy  intregating  u.e^(−y) =−(y^2 /2)+c  (e^x .x).e^(−y) =−(y^2 /2)+c
$${u}={e}^{{x}} {x}\:\:{du}={e}^{{x}} \left({x}+\mathrm{1}\right){dx} \\ $$$${du}+\left({ye}^{{y}} −{u}\right){dy}=\mathrm{0} \\ $$$${du}=\left({u}−{ye}^{{y}} \right){dy} \\ $$$$\frac{{du}}{{dy}}−{u}=−{ye}^{{y}} \\ $$$${intregating}\:{factor}\:{e}^{\int−{dy}} ={e}^{−{y}} \\ $$$${e}^{−{y}} \frac{{du}}{{dy}}+\left(−{ue}^{−{y}} \right)=−{y} \\ $$$$\frac{{d}\left({u}.{e}^{−{y}} \right)}{{dy}}=−{y} \\ $$$${d}\left({u}.{e}^{−{y}} \right)=−{ydy} \\ $$$${intregating} \\ $$$${u}.{e}^{−{y}} =−\frac{{y}^{\mathrm{2}} }{\mathrm{2}}+{c} \\ $$$$\left({e}^{{x}} .{x}\right).{e}^{−{y}} =−\frac{{y}^{\mathrm{2}} }{\mathrm{2}}+{c} \\ $$$$ \\ $$
Commented by rahul 19 last updated on 07/Aug/18
Thank You sir ������
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Aug/18
checking...  differentiating wrt to x  e^(−y) {e^x (x+1)}+e^x .x(−e^(−y) )(dy/dx)=−y(dy/dx)  multiply both side by e^y   e^x (x+1)−e^x x(dy/dx)=−ye^y (dy/dx)  e^x (x+1)dx+(e^y y−e^x x)dy=0
$${checking}… \\ $$$${differentiating}\:{wrt}\:{to}\:{x} \\ $$$${e}^{−{y}} \left\{{e}^{{x}} \left({x}+\mathrm{1}\right)\right\}+{e}^{{x}} .{x}\left(−{e}^{−{y}} \right)\frac{{dy}}{{dx}}=−{y}\frac{{dy}}{{dx}} \\ $$$${multiply}\:{both}\:{side}\:{by}\:{e}^{{y}} \\ $$$${e}^{{x}} \left({x}+\mathrm{1}\right)−{e}^{{x}} {x}\frac{{dy}}{{dx}}=−{ye}^{{y}} \frac{{dy}}{{dx}} \\ $$$${e}^{{x}} \left({x}+\mathrm{1}\right){dx}+\left({e}^{{y}} {y}−{e}^{{x}} {x}\right){dy}=\mathrm{0} \\ $$
Commented by rahul 19 last updated on 07/Aug/18
����������

Leave a Reply

Your email address will not be published. Required fields are marked *