Menu Close

solve-f-x-f-f-x-




Question Number 98913 by mr W last updated on 17/Jun/20
solve  f ′(x)=f(f(x))
$${solve} \\ $$$${f}\:'\left({x}\right)={f}\left({f}\left({x}\right)\right) \\ $$
Commented by john santu last updated on 17/Jun/20
let f(x) = Kx^β   f ′(x) = Kβ x^(β−1)   f(f(x))= K(Kx^β )^β  = K^(β+1)  x^β^2    ⇔ f ′(x) = f(f(x))  Kβ x^(β−1)  = K.K^β  x^β^2    ⇒β^2 =β−1 ⇔ { ((β = ((1+i(√3))/2))),((β = ((1−i(√3))/2))) :}  β = e^(± i(π/3))  .   ⇔K^β  = β ⇒K = β^(1/β)    for β = e^(i(π/3))  ⇒ (1/β) = e^(−i(π/3))   K= e^(i(π/3).−i(π/3))  = e^(((√3)/6)π (((√3)/2)+(1/2)))
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{Kx}^{\beta} \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)\:=\:\mathrm{K}\beta\:\mathrm{x}^{\beta−\mathrm{1}} \\ $$$$\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)=\:\mathrm{K}\left(\mathrm{Kx}^{\beta} \right)^{\beta} \:=\:\mathrm{K}^{\beta+\mathrm{1}} \:\mathrm{x}^{\beta^{\mathrm{2}} } \\ $$$$\Leftrightarrow\:\mathrm{f}\:'\left(\mathrm{x}\right)\:=\:\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right) \\ $$$$\mathrm{K}\beta\:\mathrm{x}^{\beta−\mathrm{1}} \:=\:\mathrm{K}.\mathrm{K}^{\beta} \:\mathrm{x}^{\beta^{\mathrm{2}} } \\ $$$$\Rightarrow\beta^{\mathrm{2}} =\beta−\mathrm{1}\:\Leftrightarrow\begin{cases}{\beta\:=\:\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}}\\{\beta\:=\:\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}}\end{cases} \\ $$$$\beta\:=\:\mathrm{e}^{\pm\:{i}\frac{\pi}{\mathrm{3}}} \:.\: \\ $$$$\Leftrightarrow\mathrm{K}^{\beta} \:=\:\beta\:\Rightarrow\mathrm{K}\:=\:\beta^{\frac{\mathrm{1}}{\beta}} \: \\ $$$$\mathrm{for}\:\beta\:=\:\mathrm{e}^{{i}\frac{\pi}{\mathrm{3}}} \:\Rightarrow\:\frac{\mathrm{1}}{\beta}\:=\:\mathrm{e}^{−{i}\frac{\pi}{\mathrm{3}}} \\ $$$$\mathrm{K}=\:\mathrm{e}^{{i}\frac{\pi}{\mathrm{3}}.−{i}\frac{\pi}{\mathrm{3}}} \:=\:\mathrm{e}^{\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\pi\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$
Commented by mr W last updated on 17/Jun/20
thanks sir!  no real function?
$${thanks}\:{sir}! \\ $$$${no}\:{real}\:{function}? \\ $$
Commented by john santu last updated on 17/Jun/20
no sir.
$$\mathrm{no}\:\mathrm{sir}.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *