Menu Close

solve-for-0-2pi-the-equation-cos-pi-3-1-2-




Question Number 49064 by Rio Michael last updated on 02/Dec/18
solve for 0°≤θ≤2π the equation  cos(θ + (π/3)) = (1/2)
$${solve}\:{for}\:\mathrm{0}°\leqslant\theta\leqslant\mathrm{2}\pi\:{the}\:{equation} \\ $$$${cos}\left(\theta\:+\:\frac{\pi}{\mathrm{3}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by hknkrc46 last updated on 02/Dec/18
cos (θ+(π/3))=cos ((π/3))  θ+(π/3)=(π/3)+2πk ∨ −(θ+(π/3))=(π/3)+2πk (k∈Z)  θ=2πk ∨ −θ−(π/3)=(π/3)+2πk (k∈Z)  θ=2πk ∨ −θ=((2π)/3)+2πk (k∈Z)  θ=2πk ∨ θ=−((2π)/3)−2πk (k∈Z)  θ=2πk ∨ θ=−((2π)/3)+2πk (k∈Z) ★  θ=2πk ∧ k=0 ⇒ θ=0   θ=2πk ∧ k=1 ⇒ θ=2π  θ=−((2π)/3)+2πk ∧ k=1 ⇒ θ=((4π)/3)  {0,((4π)/3),2π}
$$\mathrm{cos}\:\left(\theta+\frac{\pi}{\mathrm{3}}\right)=\mathrm{cos}\:\left(\frac{\pi}{\mathrm{3}}\right) \\ $$$$\theta+\frac{\pi}{\mathrm{3}}=\frac{\pi}{\mathrm{3}}+\mathrm{2}\pi{k}\:\vee\:−\left(\theta+\frac{\pi}{\mathrm{3}}\right)=\frac{\pi}{\mathrm{3}}+\mathrm{2}\pi{k}\:\left({k}\in\mathbb{Z}\right) \\ $$$$\theta=\mathrm{2}\pi{k}\:\vee\:−\theta−\frac{\pi}{\mathrm{3}}=\frac{\pi}{\mathrm{3}}+\mathrm{2}\pi{k}\:\left({k}\in\mathbb{Z}\right) \\ $$$$\theta=\mathrm{2}\pi{k}\:\vee\:−\theta=\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi{k}\:\left({k}\in\mathbb{Z}\right) \\ $$$$\theta=\mathrm{2}\pi{k}\:\vee\:\theta=−\frac{\mathrm{2}\pi}{\mathrm{3}}−\mathrm{2}\pi{k}\:\left({k}\in\mathbb{Z}\right) \\ $$$$\theta=\mathrm{2}\pi{k}\:\vee\:\theta=−\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi{k}\:\left({k}\in\mathbb{Z}\right)\:\bigstar \\ $$$$\theta=\mathrm{2}\pi{k}\:\wedge\:{k}=\mathrm{0}\:\Rightarrow\:\theta=\mathrm{0}\: \\ $$$$\theta=\mathrm{2}\pi{k}\:\wedge\:{k}=\mathrm{1}\:\Rightarrow\:\theta=\mathrm{2}\pi \\ $$$$\theta=−\frac{\mathrm{2}\pi}{\mathrm{3}}+\mathrm{2}\pi{k}\:\wedge\:{k}=\mathrm{1}\:\Rightarrow\:\theta=\frac{\mathrm{4}\pi}{\mathrm{3}} \\ $$$$\left\{\mathrm{0},\frac{\mathrm{4}\pi}{\mathrm{3}},\mathrm{2}\pi\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *