Menu Close

solve-for-0-pi-the-equations-a-cos-2-pi-2-1-2-b-cos-3-sin-0-




Question Number 38881 by Rio Mike last updated on 30/Jun/18
solve for 0 ≤ θ ≤π, the equations  a)_  cos (2θ − (π/2))= (1/2)  b) cos θ − (√3) sin θ = 0
solvefor0θπ,theequationsa)cos(2θπ2)=12b)cosθ3sinθ=0
Answered by MrW3 last updated on 30/Jun/18
0≤θ≤π  −(π/2)≤2θ−(π/2)≤((3π)/2)  (a)  cos (2θ − (π/2))= (1/2)  ⇒2θ − (π/2)= −(π/3), (π/3)  ⇒θ=(1/2)((π/2)−(π/3))=(π/(12))  ⇒θ=(1/2)((π/2)+(π/3))=((5π)/(12))  (b)  cos θ − (√3) sin θ = 0  ⇒tan θ=(1/( (√3)))  ⇒θ=(π/6)
0θππ22θπ23π2(a)cos(2θπ2)=122θπ2=π3,π3θ=12(π2π3)=π12θ=12(π2+π3)=5π12(b)cosθ3sinθ=0tanθ=13θ=π6

Leave a Reply

Your email address will not be published. Required fields are marked *