Question Number 18034 by chux last updated on 14/Jul/17
$$\mathrm{solve}\:\mathrm{for}\:\mathrm{a} \\ $$$$ \\ $$$$\mathrm{5log}\:_{\mathrm{4}} \mathrm{a}+\mathrm{48log}\:_{\mathrm{a}} \mathrm{4}=\frac{\mathrm{a}}{\mathrm{8}} \\ $$
Answered by 433 last updated on 14/Jul/17
$$ \\ $$$$ \\ $$$$\mathrm{5log}\:_{\mathrm{4}} {a}+\mathrm{48}\frac{\mathrm{log}\:_{\mathrm{4}} \mathrm{4}}{\mathrm{log}\:_{\mathrm{4}} {a}}=\frac{{a}}{\mathrm{8}} \\ $$$$\mathrm{5log}\:_{\mathrm{4}} {a}+\frac{\mathrm{48}}{\mathrm{log}\:_{\mathrm{4}} {a}}=\frac{{a}}{\mathrm{8}} \\ $$$$\mathrm{log}\:_{\mathrm{4}} {a}={x}\:\Leftrightarrow{a}=\mathrm{4}^{{x}} \\ $$$$\mathrm{5}{x}+\frac{\mathrm{48}}{{x}}=\frac{\mathrm{4}^{{x}} }{\mathrm{8}} \\ $$$$\mathrm{5}{x}+\frac{\mathrm{48}}{{x}}=\mathrm{2}^{\mathrm{2}{x}−\mathrm{3}} \:\:\left(\mathrm{1}\right) \\ $$$${x}=\mathrm{4}\:\Rightarrow\:\mathrm{20}+\frac{\mathrm{48}}{\mathrm{4}}=\mathrm{2}^{\mathrm{5}} \: \\ $$$${If}\:{x}_{\mathrm{0}} <\mathrm{0}\:{was}\:{solution} \\ $$$$\mathrm{5}{x}_{\mathrm{0}} +\frac{\mathrm{48}}{{x}_{\mathrm{0}} }<\mathrm{0}\:\&\:\mathrm{2}^{\mathrm{2}{x}_{\mathrm{0}} −\mathrm{3}} >\mathrm{0} \\ $$$${x}>\mathrm{0} \\ $$$${f}\left({x}\right)=\mathrm{5}{x}+\frac{\mathrm{48}}{{x}}−\mathrm{2}^{\mathrm{2}{x}−\mathrm{3}} \\ $$$${f}'\left({x}\right)=\mathrm{5}−\frac{\mathrm{48}}{{x}^{\mathrm{2}} }−\mathrm{2}^{\mathrm{2}{x}−\mathrm{3}} ×\mathrm{ln}\:\mathrm{2}×\mathrm{2} \\ $$$$\mathrm{0}<{x}<\mathrm{3} \\ $$$$\frac{\mathrm{48}}{{x}^{\mathrm{2}} }+\mathrm{2}^{\mathrm{2}{x}−\mathrm{1}} ×\mathrm{ln}\:\mathrm{2}>\frac{\mathrm{48}}{{x}^{\mathrm{2}} }+\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}>\frac{\mathrm{48}}{\mathrm{9}}+\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{2}}>\mathrm{5} \\ $$$${x}>\mathrm{3} \\ $$$$\frac{\mathrm{48}}{{x}^{\mathrm{2}} }+\mathrm{2}^{\mathrm{2}{x}−\mathrm{1}} ×\mathrm{ln}\:\mathrm{2}>\frac{\mathrm{48}}{{x}^{\mathrm{2}} }+\mathrm{32}×\mathrm{ln}\:\mathrm{2}>\mathrm{5} \\ $$$${f}'\left({x}\right)<\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:{has}\:\leqslant\mathrm{1}\:{solution} \\ $$$${x}=\mathrm{4}\:\Rightarrow\:{a}=\mathrm{4}^{\mathrm{4}} \\ $$
Answered by ajfour last updated on 14/Jul/17
$$\:\mathrm{a}=\mathrm{256} \\ $$$$\mathrm{let}\:\mathrm{a}=\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:,\:\mathrm{then}\:\mathrm{log}\:_{\mathrm{4}} \mathrm{a}=\mathrm{x} \\ $$$$\Rightarrow\:\:\mathrm{5x}+\frac{\mathrm{48}}{\mathrm{x}}=\:\frac{\mathrm{4}^{\boldsymbol{\mathrm{x}}−\mathrm{1}} }{\mathrm{2}}\: \\ $$$$\Rightarrow\:\:\mathrm{x}=\mathrm{4}\:\:\:\:\:\:\:\:\left(\mathrm{trial}\:\mathrm{and}\:\mathrm{error}\:\mathrm{with}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{derivative}\:\mathrm{test}\right) \\ $$$$\Rightarrow\:\mathrm{a}=\mathrm{4}^{\mathrm{4}} =\mathrm{256}\:\:\:\:\left(\mathrm{only}\:\mathrm{one}\:\mathrm{solution}\right). \\ $$$$ \\ $$