Menu Close

solve-for-a-5log-4-a-48log-a-4-a-8-




Question Number 18034 by chux last updated on 14/Jul/17
solve for a    5log _4 a+48log _a 4=(a/8)
solvefora5log4a+48loga4=a8
Answered by 433 last updated on 14/Jul/17
    5log _4 a+48((log _4 4)/(log _4 a))=(a/8)  5log _4 a+((48)/(log _4 a))=(a/8)  log _4 a=x ⇔a=4^x   5x+((48)/x)=(4^x /8)  5x+((48)/x)=2^(2x−3)   (1)  x=4 ⇒ 20+((48)/4)=2^5    If x_0 <0 was solution  5x_0 +((48)/x_0 )<0 & 2^(2x_0 −3) >0  x>0  f(x)=5x+((48)/x)−2^(2x−3)   f′(x)=5−((48)/x^2 )−2^(2x−3) ×ln 2×2  0<x<3  ((48)/x^2 )+2^(2x−1) ×ln 2>((48)/x^2 )+((ln 2)/2)>((48)/9)+((ln 2)/2)>5  x>3  ((48)/x^2 )+2^(2x−1) ×ln 2>((48)/x^2 )+32×ln 2>5  f′(x)<0  (1) has ≤1 solution  x=4 ⇒ a=4^4
5log4a+48log44log4a=a85log4a+48log4a=a8log4a=xa=4x5x+48x=4x85x+48x=22x3(1)x=420+484=25Ifx0<0wassolution5x0+48x0<0&22x03>0x>0f(x)=5x+48x22x3f(x)=548x222x3×ln2×20<x<348x2+22x1×ln2>48x2+ln22>489+ln22>5x>348x2+22x1×ln2>48x2+32×ln2>5f(x)<0(1)has1solutionx=4a=44
Answered by ajfour last updated on 14/Jul/17
 a=256  let a=4^x  , then log _4 a=x  ⇒  5x+((48)/x)= (4^(x−1) /2)   ⇒  x=4        (trial and error with                             derivative test)  ⇒ a=4^4 =256    (only one solution).
a=256leta=4\boldsymbolx,thenlog4a=x5x+48x=4\boldsymbolx12x=4(trialanderrorwithderivativetest)a=44=256(onlyonesolution).

Leave a Reply

Your email address will not be published. Required fields are marked *