Menu Close

Solve-for-integers-6x-5y-2-4z-x-2y-2-3z-2021-




Question Number 150558 by mathdanisur last updated on 13/Aug/21
Solve for integers:  (6x + 5y^2 )(4z + x)(2y^2  + 3z) = 2021
Solveforintegers:(6x+5y2)(4z+x)(2y2+3z)=2021
Answered by MJS_new last updated on 13/Aug/21
2021=43×47  abc=2021  one factor =1  one factor =43  one factor =47    (1) 6x+5y^2 =a ⇒ y^2 =((a−6x)/5)  (2) 4z+x=b  (3) 2y^2 +3z=c ⇒ y^2 =((c−3z)/2)  ================  (1)/(3)  12x−15z−2a+5c=0           (2)        x+   4z−b            =0  ⇒  x=((8a+15b−20c)/(63))∧z=((−2a+12b+5c)/(63))  ⇒  y=±(√((a−6b+8c)/(21)))  testing all variations for a, b, c = 1, 43, 47  ⇒  no integer solution
2021=43×47abc=2021onefactor=1onefactor=43onefactor=47(1)6x+5y2=ay2=a6x5(2)4z+x=b(3)2y2+3z=cy2=c3z2================(1)/(3)12x15z2a+5c=0(2)x+4zb=0x=8a+15b20c63z=2a+12b+5c63y=±a6b+8c21testingallvariationsfora,b,c=1,43,47nointegersolution
Commented by mathdanisur last updated on 14/Aug/21
Thank you Ser cool
ThankyouSercool

Leave a Reply

Your email address will not be published. Required fields are marked *