Question Number 149266 by mathdanisur last updated on 04/Aug/21
$${Solve}\:{for}\:{natural}\:{numbers}: \\ $$$${x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+{x}\:+\:{y}\:=\:\mathrm{3}{xy} \\ $$
Answered by nimnim last updated on 04/Aug/21
$$\Rightarrow\left({x}+{y}\right)^{\mathrm{2}} +\left({x}+{y}\right)=\mathrm{5}{xy} \\ $$$$\Rightarrow\left({x}+{y}\right)\left({x}+{y}+\mathrm{1}\right)=\mathrm{5}{xy} \\ $$$${for}\:{x},{y}\in{N} \\ $$$${case}.\mathrm{1}\:\:\:\:{x}+{y}={xy}\:\:\:\:{and}\:\:{x}+{y}+\mathrm{1}=\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow{x}+{y}=\mathrm{4} \\ $$$$\Rightarrow\left({x},{y}\right)=\left(\mathrm{2},\mathrm{2}\right) \\ $$$${case}.\mathrm{2}\:\:\:\:{x}+{y}=\mathrm{5}\:\:{and}\:{x}+{y}+\mathrm{1}={xy} \\ $$$$\Rightarrow\:\left({x},{y}\right)=\left(\mathrm{2},\mathrm{3}\right)\:{or}\:\left(\mathrm{3},\mathrm{2}\right) \\ $$$$\therefore{solution}\:{set}=\left\{\left(\mathrm{2},\mathrm{2}\right),\left(\mathrm{2},\mathrm{3}\right),\left(\mathrm{3},\mathrm{2}\right)\right\} \\ $$$$\:\: \\ $$
Commented by mathdanisur last updated on 04/Aug/21
$${Thank}\:{You}\:{Ser} \\ $$
Commented by mathdanisur last updated on 04/Aug/21
$${Ser},\:{but}\:{there}\:{are}\:{finitely}\:{many} \\ $$$${solutions} \\ $$
Commented by mathdanisur last updated on 04/Aug/21
$${How}\:{can}\:{you}\:{ensure}\:{the}\:{equality} \\ $$$${will}\:{be}\:{always}\:{of}\:{the}\:{form}\:\boldsymbol{{xy}}\:{and}\:\mathrm{5}? \\ $$