Menu Close

Solve-for-natural-numbers-x-3-y-4-2022-




Question Number 150559 by mathdanisur last updated on 13/Aug/21
Solve for natural numbers:  x^3  + y^4  = 2022
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{natural}\:\mathrm{numbers}: \\ $$$$\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{4}} \:=\:\mathrm{2022} \\ $$
Answered by MJS_new last updated on 13/Aug/21
if x=0: y^4 =2022 ⇒ y≈6.7  ⇒ y≤6  x=((2022−y^4 ))^(1/3)  with y=1, 2, 3, 4, 5, 6  ⇒ no solution ∈N
$$\mathrm{if}\:{x}=\mathrm{0}:\:{y}^{\mathrm{4}} =\mathrm{2022}\:\Rightarrow\:{y}\approx\mathrm{6}.\mathrm{7} \\ $$$$\Rightarrow\:{y}\leqslant\mathrm{6} \\ $$$${x}=\sqrt[{\mathrm{3}}]{\mathrm{2022}−{y}^{\mathrm{4}} }\:\mathrm{with}\:{y}=\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:\mathrm{6} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{solution}\:\in\mathbb{N} \\ $$
Commented by mathdanisur last updated on 13/Aug/21
Thanks Ser,  if  x=1;2;3;..?
$$\mathrm{Thanks}\:\mathrm{Ser},\:\:\mathrm{if}\:\:\mathrm{x}=\mathrm{1};\mathrm{2};\mathrm{3};..? \\ $$
Commented by MJS_new last updated on 13/Aug/21
how could it make a difference?  for 0<y<7 I tested all possible values  which natural number besides 1, 2, 3, 4, 5, 6  did I miss?
$$\mathrm{how}\:\mathrm{could}\:\mathrm{it}\:\mathrm{make}\:\mathrm{a}\:\mathrm{difference}? \\ $$$$\mathrm{for}\:\mathrm{0}<{y}<\mathrm{7}\:\mathrm{I}\:\mathrm{tested}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{values} \\ $$$$\mathrm{which}\:\mathrm{natural}\:\mathrm{number}\:\mathrm{besides}\:\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},\:\mathrm{6} \\ $$$$\mathrm{did}\:\mathrm{I}\:\mathrm{miss}? \\ $$
Commented by mathdanisur last updated on 14/Aug/21
Thankyou Ser
$$\mathrm{Thankyou}\:\mathrm{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *