Menu Close

Solve-for-positive-integers-a-3-9b-2-9c-2-2017-where-a-b-c-




Question Number 159057 by HongKing last updated on 12/Nov/21
Solve for positive integers:  a^3  + 9b^2  + 9c^2  = 2017  where  a ≥ b ≥ c
Solveforpositiveintegers:a3+9b2+9c2=2017whereabc
Commented by Rasheed.Sindhi last updated on 12/Nov/21
(a,b,c)=(10,8,7)
(a,b,c)=(10,8,7)
Answered by Rasheed.Sindhi last updated on 12/Nov/21
a^3  + 9b^2  + 9c^2  = 2017  where  a ≥ b ≥ c ∧ a,b,c∈Z^+   b^2 +c^2 =((2017−a^3 )/9)  ⇒9∣(2017−a^3 )  a≤⌊ ((2017))^(1/3)  ⌋=12  a=12: 9∤(2017−12^3 ) (rejected)  We can observe that only   9∣2017−10^3   9∣2017−7^3   9∣2017−4^3   9∣2017−1^3   So possible values for a are:  10,7,4,1   a=10  b^2 +c^2 =((2017−a^3 )/9)=((2017−10^3 )/9)=113  Note that b & c can have values upto  a  Here b,c≤10,we can easily find     113=8^2 +7^2   a=7  b^2 +c^2 =((2017−7^3 )/9)=186  maximum value for b & c is 7  and   max(b^2 +c^2 )=7^2 +7^2 =98  b^2 +c^2 ≠186  Similar logic shows that for a=4,1  there are no values for b,c under  the above conditions.  ∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧∨∧                                                                 _(⌢) ^(⌢^ )              1st Filter:  determinant (((a≤⌊((2017))^(1/3)  ⌋=12)))   2nd Filter:  determinant (((9∣(2017−a^3 ))))   3rd Filter:    determinant (((b,c≤a  ∧  b^2 +c^2 =(2017−a^3 )/9)))
a3+9b2+9c2=2017whereabca,b,cZ+b2+c2=2017a399(2017a3)a20173=12a=12:9(2017123)(rejected)Wecanobservethatonly92017103920177392017439201713Sopossiblevaluesforaare:10,7,4,1a=10b2+c2=2017a39=20171039=113Notethatb&ccanhavevaluesuptoaHereb,c10,wecaneasilyfind113=82+72a=7b2+c2=2017739=186maximumvalueforb&cis7andmax(b2+c2)=72+72=98b2+c2186Similarlogicshowsthatfora=4,1therearenovaluesforb,cundertheaboveconditions.1stFilter:a20173=122ndFilter:9(2017a3)3rdFilter:b,cab2+c2=(2017a3)/9
Commented by HongKing last updated on 14/Nov/21
very nice dear Ser thank you
verynicedearSerthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *