Menu Close

Solve-for-positive-integers-abcd-abc-a-1-b-1-c-1-




Question Number 155204 by mathdanisur last updated on 26/Sep/21
Solve for positive integers:  abcd + abc = (a+1)(b+1)(c+1)
Solveforpositiveintegers:abcd+abc=(a+1)(b+1)(c+1)
Answered by MJS_new last updated on 27/Sep/21
a≤b≤c  all possible solutions for a b c d are  1 1 1 7  1 1 2 5  1 1 4 4  1 2 3 3  1 3 8 2  1 4 5 2  2 2 3 2  2 4 15 1  2 5 9 1  2 6 7 1  3 3 8 1  3 4 5 1
abcallpossiblesolutionsforabcdare1117112511441233138214522232241512591267133813451
Commented by ajfour last updated on 27/Sep/21
sir, i had emailed u couple of  weeks back; u dint reply!
sir,ihademaileducoupleofweeksback;udintreply!
Commented by MJS_new last updated on 27/Sep/21
Sorry I received no email from you, but this happened before, might be an issue of my provider.
Commented by ajfour last updated on 30/Sep/21
dint u chase our prize further  sir? (more or less i was asking  this)   at least u can reply here  Sir MjS.
dintuchaseourprizefurthersir?(moreorlessiwasaskingthis)atleastucanreplyhereSirMjS.
Commented by mathdanisur last updated on 27/Sep/21
Yes Ser, thank you, solution if possible
YesSer,thankyou,solutionifpossible
Answered by Rasheed.Sindhi last updated on 28/Sep/21
Solve for positive integers:  abcd + abc = (a+1)(b+1)(c+1)        [_(−)   abc(d+1)=(a+1)(b+1)(c+1)  ⇒abc ∣ (a+1)(b+1)(c+1)..........A  ⇒ { ((a∣(a+1)⇒a=1.........(i))),((a∣(b+1))),((a∣(c+1))),((a∣(a+1)(b+1))),((a∣(b+1)(c+1))),((a∣(c+1)(a+1))),((a∣(a+1)(b+1)(c+1))) :}  a=1:⇒bc ∣ 2(b+1)(c+1)..........B  ⇒ { ((b∣2⇒b=1,2)),((b∣(b+1)⇒b=1)),((b∣(c+1))),((b∣2(b+1))),((b∣2(c+1))),((b∣(b+1)(c+1))),((b∣2(b+1)(c+1))) :}  a=1,b=1: B⇒c ∣ 4(c+1)  ⇒ { ((c∣4⇒c=1,2,4)),((c∣(c+1)⇒c=1)),((c∣4(c+1))) :}  a=1,b=1,c=1:  d+1=(((a+1)(b+1)(c+1))/(abc))      ⇒d+1=((2.2.2)/(1.1.1))⇒d=7  a=1,b=2,c=1:     d+1=((2.3.2)/(1.2.1))=6⇒d=5  a=1,b=1,c=2:        ⇒d+1=((2.2.3)/(1.1.2))=6⇒d=5    Continue...
Solveforpositiveintegers:Extra \left or missing \rightabc(d+1)=(a+1)(b+1)(c+1)abc(a+1)(b+1)(c+1).A{a(a+1)a=1(i)a(b+1)a(c+1)a(a+1)(b+1)a(b+1)(c+1)a(c+1)(a+1)a(a+1)(b+1)(c+1)a=1:⇒bc2(b+1)(c+1).B{b2b=1,2b(b+1)b=1b(c+1)b2(b+1)b2(c+1)b(b+1)(c+1)b2(b+1)(c+1)a=1,b=1:Bc4(c+1){c4c=1,2,4c(c+1)c=1c4(c+1)a=1,b=1,c=1:d+1=(a+1)(b+1)(c+1)abcd+1=2.2.21.1.1d=7a=1,b=2,c=1:d+1=2.3.21.2.1=6d=5a=1,b=1,c=2:d+1=2.2.31.1.2=6d=5Continue
Answered by Rasheed.Sindhi last updated on 29/Sep/21
Solve for positive integers:  abcd + abc = (a+1)(b+1)(c+1)  d+1=(((a+1)(b+1)(c+1))/(abc))...........A  since d∈Z^+   ∴  (((a+1)(b+1)(c+1))/(abc))∈Z^+   One of many possibilities is a∣(a+1)  and we start from it  a∣(a+1)⇒a=1  Let  a≤b≤c  a=1:A⇒d+1=(((1+1)(b+1)(c+1))/(1.bc))                 =((2(b+1)(c+1))/(bc))⇒b=1,2,...            b=1: d+1=((2(1+1)(c+1))/(1.c))                         =((4(c+1))/c)⇒c=1,2,4  d(a,b,c)=(((a+1)(b+1)(c+1))/(abc))−1  d(1,1,1)=(((1+1)(1+1)(1+1))/(1.1.1))−1=7  d(1,1,2)=(((1+1)(1+1)(2+1))/(1.1.2))−1=5  d(1,1,4)=(((1+1)(1+1)(4+1))/(1.1.4))−1=4  a=1:  d+1=(((1+1)(b+1)(c+1))/(1.b.c))                          =((2(b+1)(c+1))/(b.c))⇒b=1,2             b=2:           d+1=((2(2+1)(c+1))/(1.2.c))=((3(c+1))/c)⇒c=1,3  d(1,2,3)=(((1+1)(2+1)(3+1))/(1.2.3))−1=3                  Continue...
Solveforpositiveintegers:abcd+abc=(a+1)(b+1)(c+1)d+1=(a+1)(b+1)(c+1)abc..AsincedZ+(a+1)(b+1)(c+1)abcZ+Oneofmanypossibilitiesisa(a+1)andwestartfromita(a+1)a=1Letabca=1:Ad+1=(1+1)(b+1)(c+1)1.bc=2(b+1)(c+1)bcb=1,2,b=1:d+1=2(1+1)(c+1)1.c=4(c+1)cc=1,2,4d(a,b,c)=(a+1)(b+1)(c+1)abc1d(1,1,1)=(1+1)(1+1)(1+1)1.1.11=7d(1,1,2)=(1+1)(1+1)(2+1)1.1.21=5d(1,1,4)=(1+1)(1+1)(4+1)1.1.41=4a=1:d+1=(1+1)(b+1)(c+1)1.b.c=2(b+1)(c+1)b.cb=1,2b=2:d+1=2(2+1)(c+1)1.2.c=3(c+1)cc=1,3d(1,2,3)=(1+1)(2+1)(3+1)1.2.31=3Continue

Leave a Reply

Your email address will not be published. Required fields are marked *