Menu Close

solve-for-R-a-bcd-100-b-cda-100-c-dab-100-d-abc-100-




Question Number 177112 by mr W last updated on 01/Oct/22
solve for R  a+bcd=100  b+cda=100  c+dab=100  d+abc=100
solveforRa+bcd=100b+cda=100c+dab=100d+abc=100
Answered by aleks041103 last updated on 01/Oct/22
1 case:a=b=c=d  a+a^3 =100⇒a=b=c=d≈4.5698    Now  a^2 +abcd=100a  b^2 +abcd=100b  c^2 +abcd=100c  d^2 +abcd=100d  ⇒a^2 −b^2 =100(a−b)  ⇒(a+b−100)(a−b)=0  ⇒(a+c−100)(a−c)=0  ⇒(a+d−100)(a−d)=0  ⇒(b+c−100)(b−c)=0  ⇒(b+d−100)(b−d)=0  ⇒(c+d−100)(c−d)=0    2 case:a=b≠c≠d  b≠c⇒b+c=100  c≠a⇒a+c=100  a≠d⇒a+d=100  ⇒c=d    3 case:a=b=x≠y=c=d  x+xy^2 =100  y+yx^2 =100  ⇒(x+y−100)(x−y)=0  ⇒x+y=100  ⇒x=100−y  ⇒x(1+y^2 )=100  (100−y)(1+y^2 )=100  100−y+100y^2 −y^3 =100  ⇒y^3 −100y^2 +y=0  ⇒y=0(obv. wrong) and y=((100±(√(100^2 −4)))/2)=50±(√(2499))  ⇒a=b=50±(√(2499)) and c=d=50∓(√(2499))    answer:  a=b=c=d=x≈4.5698 (x^3 +x−100=0)  and  a=b=50±(√(2499)) and c=d=50∓(√(2499)) (with all of its permutations)
1case:a=b=c=da+a3=100a=b=c=d4.5698Nowa2+abcd=100ab2+abcd=100bc2+abcd=100cd2+abcd=100da2b2=100(ab)(a+b100)(ab)=0(a+c100)(ac)=0(a+d100)(ad)=0(b+c100)(bc)=0(b+d100)(bd)=0(c+d100)(cd)=02case:a=bcdbcb+c=100caa+c=100ada+d=100c=d3case:a=b=xy=c=dx+xy2=100y+yx2=100(x+y100)(xy)=0x+y=100x=100yx(1+y2)=100(100y)(1+y2)=100100y+100y2y3=100y3100y2+y=0y=0(obv.wrong)andy=100±100242=50±2499a=b=50±2499andc=d=502499answer:a=b=c=d=x4.5698(x3+x100=0)anda=b=50±2499andc=d=502499(withallofitspermutations)
Commented by mr W last updated on 01/Oct/22
thanks sir!
thankssir!
Commented by Tawa11 last updated on 02/Oct/22
Great sirs
Greatsirs
Answered by Rasheed.Sindhi last updated on 02/Oct/22
solve for R ;a+bcd=100,b+cda=100,  c+dab=100,d+abc=100_                                 (i)−(ii):  a−cda−b+bcd=0  a(1−cd)−b(1−cd)=0  (a−b)(1−cd)=0  a=b ∣  cd=1  (i)+(ii):  (a+b)(1+cd)=200  (a=b ∨ cd=1)∧ (a+b)(1+cd)=200  2a(1+1)=200  a=50  Similar way:  (a=c ∨ bd=1)  a=d ∣ bc=1  b=c ∣ ad=1  b=d ∣ ac=1  c=d ∣ ab=1  Similar way  a=c ∣ bd=1......  a=d ∣ bc=1  b=c ∣ ad=1  b=d ∣ ac=1  c=d ∣ ab=1  a=b=c=d   ....
solveforR;a+bcd=100,b+cda=100,c+dab=100,d+abc=100(i)(ii):acdab+bcd=0a(1cd)b(1cd)=0(ab)(1cd)=0a=bcd=1(i)+(ii):(a+b)(1+cd)=200(a=bcd=1)(a+b)(1+cd)=2002a(1+1)=200a=50Similarway:(a=cbd=1)a=dbc=1b=cad=1b=dac=1c=dab=1Similarwaya=cbd=1a=dbc=1b=cad=1b=dac=1c=dab=1a=b=c=d.
Commented by mr W last updated on 01/Oct/22
thanks sir!
thankssir!
Answered by mr W last updated on 01/Oct/22
a^2 −100a+abcd=0  b^2 −100b+abcd=0  c^2 −100c+abcd=0  d^2 −100d+abcd=0  let k=abcd  we see a,b,c,d are the roots of the   uadratic e uation x^2 −100x+k=0.  since a quadratic equation can have  at most two different roots, we can  only have following cases:    case 1: two roots are equal,  ⇒a,b,c,d are equal.  a=b=c=d  a^3 +a−100=0  ⇒a=((((√(202503))/9)+50))^(1/3) −((((√(202503))/9)−50))^(1/3)            ≈4.56978  ⇒(a,b,c,d)=(4.56978,4.56978,4.56978,4.56978)     case 2: two roots are different,                   a≠b=c=d (as example)  a+b^3 =100   ...(i)  b+ab^2 =100   ...(ii)  (i)−(ii):  (a−b)(1−b^2 )=0  ⇒1−b^2 =0   ⇒b=±1 ⇒a=100−b^3 =100∓1  i.e. b=1, a=99 or b=−1, a=101  ⇒(a,b,c,d)=(99,1,1,1) or (101,−1,−1,−1)  and we can exchange a with b,c,d.    case 3: two roots are different,                   a=b≠c=d (as example)  a+ac^2 =100   ...(iii)  c+a^2 c=100   ...(iv)  (iii)−(iv):  (a−c)(1−ac)=0  ⇒1−ac=0  ⇒ac=1 ⇒a+c=100  ⇒a,c are roots of z^2 −100z+1=0  a,c=50±(√(50^2 −1))=50±7(√(51))  ⇒(a,b,c,d)=(50+7(√(51)),50+7(√(51)),50−7(√(51)),50−7(√(51))) or (50−7(√(51)),50−7(√(51)),50+7(√(51)),50+7(√(51)))  and we can exchange a, c with a,b or a,d.
a2100a+abcd=0b2100b+abcd=0c2100c+abcd=0d2100d+abcd=0letk=abcdweseea,b,c,daretherootsoftheuadraticeuationx2100x+k=0.sinceaquadraticequationcanhaveatmosttwodifferentroots,wecanonlyhavefollowingcases:case1:tworootsareequal,a,b,c,dareequal.a=b=c=da3+a100=0a=2025039+50320250395034.56978(a,b,c,d)=(4.56978,4.56978,4.56978,4.56978)case2:tworootsaredifferent,ab=c=d(asexample)a+b3=100(i)b+ab2=100(ii)(i)(ii):(ab)(1b2)=01b2=0b=±1a=100b3=1001i.e.b=1,a=99orb=1,a=101(a,b,c,d)=(99,1,1,1)or(101,1,1,1)andwecanexchangeawithb,c,d.case3:tworootsaredifferent,a=bc=d(asexample)a+ac2=100(iii)c+a2c=100(iv)(iii)(iv):(ac)(1ac)=01ac=0ac=1a+c=100a,carerootsofz2100z+1=0a,c=50±5021=50±751(a,b,c,d)=(50+751,50+751,50751,50751)or(50751,50751,50+751,50+751)andwecanexchangea,cwitha,bora,d.

Leave a Reply

Your email address will not be published. Required fields are marked *