Menu Close

Solve-for-real-numbers-0-x-t-2-t-sinh-t-cosh-t-2-dt-0-




Question Number 173250 by Shrinava last updated on 08/Jul/22
Solve for real numbers:  ∫_0 ^( x)  (t^2 /((t ∙ sinh t − cosh t)^2 )) dt = 0
Solveforrealnumbers:0xt2(tsinhtcosht)2dt=0
Answered by Ar Brandon last updated on 09/Jul/22
I=∫(t^2 /((tsinht−cosht)^2 ))dt=∫((tcosht)/((tsinht−cosht)^2 ))∙(t/(cosht))dt     { ((u(t)=(t/(cosht)))),((v′(t)=((tcosht)/((tsinht−cosht)^2 )))) :} ⇒ { ((u′(t)=((cosht−tsinht)/(cosh^2 t)))),((v(t)=−(1/(tsinht−cosht)))) :}  I=−(t/(cosht(tsinht−cosht)))−∫(1/(cosh^2 t))dt     =−(t/(cosht(tsinht−cosht)))−tanht+C  ∫_0 ^x (t^2 /((tsinht−cosht)^2 ))dt=0  ⇔(x/(coshx(coshx−xsinhx)))−tanhx=0  ⇔x−sinhx(coshx−xsinhx)=0  ⇔x+xsinh^2 x−sinhxcoshx=0  ⇔x(1+sinh^2 x)−sinhxcoshx=0  ⇔xcosh^2 x−sinhxcoshx=0  ⇔coshx(xcoshx−sinhx)=0, coshx ≥ 1 ∀x∈R  ⇔xcoshx−sinhx=0⇒x=tanhx
I=t2(tsinhtcosht)2dt=tcosht(tsinhtcosht)2tcoshtdt{u(t)=tcoshtv(t)=tcosht(tsinhtcosht)2{u(t)=coshttsinhtcosh2tv(t)=1tsinhtcoshtI=tcosht(tsinhtcosht)1cosh2tdt=tcosht(tsinhtcosht)tanht+C0xt2(tsinhtcosht)2dt=0xcoshx(coshxxsinhx)tanhx=0xsinhx(coshxxsinhx)=0x+xsinh2xsinhxcoshx=0x(1+sinh2x)sinhxcoshx=0xcosh2xsinhxcoshx=0coshx(xcoshxsinhx)=0,coshx1xRxcoshxsinhx=0x=tanhx
Commented by Shrinava last updated on 09/Jul/22
thank you professor, answer.?
thankyouprofessor,answer.?

Leave a Reply

Your email address will not be published. Required fields are marked *