Menu Close

Solve-for-real-numbers-1-sin-2k-x-1-cos-2k-x-8-k-Z-




Question Number 157258 by MathSh last updated on 21/Oct/21
Solve for real numbers:  (1/(sin^(2k) (x))) + (1/(cos^(2k) (x))) = 8   ;   k∈Z
Solveforrealnumbers:1sin2k(x)+1cos2k(x)=8;kZ
Commented by mr W last updated on 21/Oct/21
((1/(sin^2  x)))^k +((1/(cos^2  x)))^k ≥2((4/( sin^2  2x)))^(k/2) ≥2^(k+1)   that means for k≥3, LHS≥16 ⇒no solution for LHS=8!  for k=0: 1+1=8 ⇒no solution!  for k≤−1: LHS≤2 ⇒no solution for LHS=8!  therefore the only possibility is k=1 or 2.    k=1:  (1/(sin^2  x))+(1/(cos^2  x))=8  (1/(sin^2  xcos^2  x))=8  (1/(sin^2  2x))=2  ⇒sin 2x=±(1/( (√2)))  ⇒2x=nπ±(π/4)  ⇒x=(((2n+1)π)/8) for k=1    k=2:  (1/(sin^4  x))+(1/(cos^4  x))=8  ((sin^4  x+cos^4  x)/((sin x cos x)^4 ))=8  (((1−((sin^2  2x)/2))16)/(sin^4  2x))=8  (((2−((sin^2  2x)/1)))/(sin^4  2x))=1  sin^2  2x+sin^2  2x−2=0  (sin^2  2x+2)(sin^2  2x−1)=0  sin 2x=±1  2x=(((2n+1)π)/2)  ⇒x=(((2n+1)π)/4) for k=2
Missing \left or extra \rightthatmeansfork3,LHS16nosolutionforLHS=8!fork=0:1+1=8nosolution!fork1:LHS2nosolutionforLHS=8!thereforetheonlypossibilityisk=1or2.k=1:1sin2x+1cos2x=81sin2xcos2x=81sin22x=2sin2x=±122x=nπ±π4x=(2n+1)π8fork=1k=2:1sin4x+1cos4x=8sin4x+cos4x(sinxcosx)4=8(1sin22x2)16sin42x=8(2sin22x1)sin42x=1sin22x+sin22x2=0(sin22x+2)(sin22x1)=0sin2x=±12x=(2n+1)π2x=(2n+1)π4fork=2
Commented by MathSh last updated on 21/Oct/21
Perfect dear Ser, thank you so much
PerfectdearSer,thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *