Menu Close

Solve-for-real-numbers-2-0-x-x-2-e-arctan-x-1-x-2-dx-1-




Question Number 173184 by Shrinava last updated on 07/Jul/22
Solve for real numbers:  2 ∫_0 ^( x)  ((x^2  ∙ e^(arctan(x)) )/( (√(1 + x^2 )))) dx = 1
Solveforrealnumbers:20xx2earctan(x)1+x2dx=1
Answered by aleks041103 last updated on 08/Jul/22
x=tan t  dx=sec^2 t dt  ⇒2∫_0 ^( t) ((tan^2 tsec^2 t e^t dt)/(sec t))=2∫_0 ^( t) ((sin^2 t)/(cos^3 t))e^t dt=  =2∫_0 ^( t)  sin t e^t  ((sin t)/(cos^3 t))dt=  =∫_0 ^( 1) sin t e^t  (−2((d(cos t))/((cos t)^3 )))=  =∫_0 ^t sint e^t  d((1/(cos^2 t)))=  =[((sint)/(cos^2 t))e^t ]_0 ^t −∫_0 ^( t) ((cos t e^t  + sin t e^t )/(cos^2 t)) dt=  =((sint)/(cos^2 t))e^t −∫_0 ^( t) (e^t /(cos t))dt−∫_0 ^( t) e^t (−(1/(cos^2 t))d(cost))=  =((sint)/(cos^2 t))e^t −∫_0 ^( t) (e^t /(cos t))dt−∫_0 ^( t) e^t d((1/(cos t)))=  =((sint)/(cos^2 t))e^t −∫_0 ^( t) (e^t /(cos t))dt−{[(e^t /(cos t))]_0 ^t −∫_0 ^( t)  (e^t /(cos t))dt}=  =((sint)/(cos^2 t))e^t −(e^t /(cos t))+1=  =(e^t /(cos t))(tan t − 1)+1=  =(x−1)(√(1+x^2 ))e^(arctan(x)) +1  ⇒(x−1)(√(1+x^2 ))e^(arctan(x)) +1=1  ⇒x=1
x=tantdx=sec2tdt20ttan2tsec2tetdtsect=20tsin2tcos3tetdt==20tsintetsintcos3tdt==01sintet(2d(cost)(cost)3)==0tsintetd(1cos2t)==[sintcos2tet]0t0tcostet+sintetcos2tdt==sintcos2tet0tetcostdt0tet(1cos2td(cost))==sintcos2tet0tetcostdt0tetd(1cost)==sintcos2tet0tetcostdt{[etcost]0t0tetcostdt}==sintcos2tetetcost+1==etcost(tant1)+1==(x1)1+x2earctan(x)+1(x1)1+x2earctan(x)+1=1x=1
Commented by peter frank last updated on 08/Jul/22
thank you
thankyou
Commented by aleks041103 last updated on 08/Jul/22
check:  (d/dx)((x−1)(√(1+x^2 ))e^(arctan(x)) +1)=  =(√(1+x^2 ))e^(arctan(x)) +(x−1)(x/( (√(1+x^2 ))))e^(arctan(x)) +(((x−1)(√(1+x^2 ))e^(arctan(x)) )/(1+x^2 ))=  =(√(1+x^2 ))e^(arctan(x)) +((x^2 −1)/( (√(1+x^2 ))))e^(arctan(x)) =  =(e^(arctan(x)) /( (√(1+x^2 ))))(1+x^2 +x^2 −1)=  =((2x^2 e^(arctan(x)) )/( (√(1+x^2 ))))  ⇒It is correct
check:ddx((x1)1+x2earctan(x)+1)==1+x2earctan(x)+(x1)x1+x2earctan(x)+(x1)1+x2earctan(x)1+x2==1+x2earctan(x)+x211+x2earctan(x)==earctan(x)1+x2(1+x2+x21)==2x2earctan(x)1+x2Itiscorrect
Commented by Shrinava last updated on 08/Jul/22
perfect professor thank you
perfectprofessorthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *