Menu Close

Solve-for-real-numbers-2x-2-3y-2-z-2-7-x-2-y-2-z-2-2-z-x-y-




Question Number 159529 by HongKing last updated on 18/Nov/21
Solve for real numbers:   { ((2x^2  + 3y^2  + z^2  = 7)),((x^2  + y^2  + z^2  = (√2) z (x + y))) :}
Solveforrealnumbers:{2x2+3y2+z2=7x2+y2+z2=2z(x+y)
Answered by 1549442205PVT last updated on 18/Nov/21
Apply the inequality 2(a^2 +b^2 )≥(a+b)^2 and  a^2 +b^2 ≥2ab  we have  2(√2)z(x+y)=2(x^2 +y^2 )+2z^2   ≥(x+y)^2 +2z^2 ≥2(√((x+y)^2 .2z^2 ))=2(√2)z(x+y)  It follows that  { ((x=y)),((x+y=(√2)z)) :}⇒2x=(√(2 z))⇒z=x(√2)  Hence from the first equation we obtain  5x^2 +2x^2 =7⇔x^2 =1⇔x=±1=y,z=±(√2)
Applytheinequality2(a2+b2)(a+b)2anda2+b22abwehave22z(x+y)=2(x2+y2)+2z2(x+y)2+2z22(x+y)2.2z2=22z(x+y)Itfollowsthat{x=yx+y=2z2x=2zz=x2Hencefromthefirstequationweobtain5x2+2x2=7x2=1x=±1=y,z=±2
Commented by HongKing last updated on 18/Nov/21
thank you so much my dear Ser cool
thankyousomuchmydearSercool

Leave a Reply

Your email address will not be published. Required fields are marked *