Question Number 156482 by MathSh last updated on 11/Oct/21
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{3}\:+\:\mathrm{sin}\left(\mathrm{2x}\right)\:=\:\mathrm{4sin}\left(\mathrm{x}\:+\:\frac{\pi}{\mathrm{4}}\right) \\ $$
Answered by mr W last updated on 11/Oct/21
$$\mathrm{3}+\mathrm{sin}\:\left(\mathrm{2}{x}\right)=\mathrm{2}\sqrt{\mathrm{2}}\left(\mathrm{sin}\:{x}+\mathrm{cos}\:{x}\right) \\ $$$$\mathrm{9}+\mathrm{6sin}\:\left(\mathrm{2}{x}\right)+\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{2}{x}\right)=\mathrm{8}\left(\mathrm{1}+\mathrm{sin}\:\left(\mathrm{2}{x}\right)\right) \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\left(\mathrm{2}{x}\right)−\mathrm{2}\:\mathrm{sin}\:\left(\mathrm{2}{x}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\mathrm{2}{x}\right)=\mathrm{1}\:\:\:…\left({i}\right) \\ $$$$\mathrm{3}+\mathrm{1}\:=\:\mathrm{4sin}\left(\mathrm{x}\:+\:\frac{\pi}{\mathrm{4}}\right) \\ $$$$\Rightarrow\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)=\mathrm{1}\:\:\:..\left({ii}\right) \\ $$$${x}+\frac{\pi}{\mathrm{4}}=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\mathrm{2}{k}\pi+\frac{\pi}{\mathrm{4}} \\ $$$${it}\:{fulfills}\:{both}\:\left({i}\right)\:{and}\:\left({ii}\right). \\ $$
Commented by MathSh last updated on 11/Oct/21
$$\mathrm{Very}\:\mathrm{nice}\:\mathrm{solution}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you} \\ $$