Menu Close

Solve-for-real-numbers-3sinx-4-y-cosx-y-2-9-




Question Number 179449 by Shrinava last updated on 29/Oct/22
Solve for real numbers:  3sinx + 4(y + cosx) = y^2  + 9
Solveforrealnumbers:3sinx+4(y+cosx)=y2+9
Answered by mr W last updated on 29/Oct/22
3 sin x+4 cos x−5=y^2 −4y+4  5[sin (x+α)−1]=(y−2)^2   since sin (x+α)≤1, LHS ≤0.  but RHS≥0, therefore  LHS=RHS=0  ⇒sin (x+α)=1 ⇒x=2kπ+(π/2)−tan^(−1) (4/3)  ⇒y=2
3sinx+4cosx5=y24y+45[sin(x+α)1]=(y2)2sincesin(x+α)1,LHS0.butRHS0,thereforeLHS=RHS=0sin(x+α)=1x=2kπ+π2tan143y=2
Commented by Shrinava last updated on 01/Nov/22
cool dear professor thank you
cooldearprofessorthankyou
Answered by manxsol last updated on 29/Oct/22
3sinx+4cosx=y^2 −4y+9  (3/5)sinx+(4/5)cosx=((y^2 −4y+9)/5)  sin(x+θ)=((y^2 −4y+9)/5)   θ=arsen(3/5)  −1≤((y^2 −4y+9)/5)≤1  −5≤y^2 −4y+9 Λ^�  y^2 −4y+9≤5  0≤y^2 −4y+14   Δ=16−56       Δ<0⇒y^2 −4y+14 ⟩0   ∀y>  y^2 −4y+9≤5  y^2 −4y+4≤0  (y−2)^2 ≤0  solution y=2     sin(x+θ)=((2^2 −4(2)+9)/5)=1  x+θ=(π/2)+2kπ  x=((π/2)−arcsin((3/5)))+2kπ
3sinx+4cosx=y24y+935sinx+45cosx=y24y+95sin(x+θ)=y24y+95θ=arsen(3/5)1y24y+9515y24y+9Λ^y24y+950y24y+14Δ=1656Δ<0y24y+140y>y24y+95y24y+40(y2)20solutiony=2sin(x+θ)=224(2)+95=1x+θ=π2+2kπx=(π2arcsin(35))+2kπ
Commented by Shrinava last updated on 01/Nov/22
cool dear professor thank you
cooldearprofessorthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *