Solve-for-real-numbers-4tan-x-sin-5x-cos-5-x-0- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 157964 by HongKing last updated on 30/Oct/21 Solveforrealnumbers:4tan(x)+sin(5x)cos5(x)=0 Commented by tounghoungko last updated on 30/Oct/21 sin(5x)=5sinxcos4x−10sin3xcos2x+sin5x⇔4sinxcos4x+5sinxcos4x−10sin3xcos2x+sin5xcos5x=0⇔9sinxcos4x−10sin3xcos2x+sin5x=0sinx(9cos4x−10sin2xcos2x+sin4x)=0(1)sinx=0⇒x={2nπ(2n+1)π;n∈Z(2)9(1+cos2x2)2−52sin22x+(1−cos2x2)2=0letcos2x=t⇒9(1+t2)2−52(1−t2)+(1−t2)2=0⇒9t2+18t+94−(5−5t2)2+1−2t+t24=0⇒9t2+18t+9−10+10t2+1−2t+t2=0⇒20t2+16t=0⇒4t(5t+4)=0(3)4t=0⇒4cos2x=0⇒cos2x=cosπ2;x=±π4+nπ(4)t=−45⇒cos2x=−45⇒2x=±arccos(−45)+2nπ⇒x=±12arccos(−45)+nπ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: If-x-2-2xy-0-find-y-Next Next post: Question-157965 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.