Menu Close

Solve-for-real-numbers-4tan-x-sin-5x-cos-5-x-0-




Question Number 157964 by HongKing last updated on 30/Oct/21
Solve for real numbers:  4tan(x) + ((sin(5x))/(cos^5 (x))) = 0
Solveforrealnumbers:4tan(x)+sin(5x)cos5(x)=0
Commented by tounghoungko last updated on 30/Oct/21
sin (5x)=5sin x cos^4 x−10sin^3 x cos^2 x+sin^5 x  ⇔ ((4sin x cos^4 x+5sin xcos^4 x−10sin^3 xcos^2 x+sin^5 x)/(cos^5 x))=0  ⇔9sin x cos^4 x−10sin^3 x cos^2 x+sin^5 x = 0  sin x(9cos^4 x−10sin^2 x cos^2 x+sin^4 x )=0  (1)sin x =0 ⇒x = { ((2nπ)),(((2n+1)π)) :} ; n∈Z  (2)9(((1+cos 2x)/2))^2 −(5/2)sin^2 2x +(((1−cos 2x)/2))^2 = 0  let cos 2x = t  ⇒9(((1+t)/2))^2 −(5/2)(1−t^2 )+(((1−t)/2))^2 = 0  ⇒((9t^2 +18t+9)/4)−(((5−5t^2 ))/2) +((1−2t+t^2 )/4) =0  ⇒9t^2 +18t+9−10+10t^2 +1−2t+t^2  =0  ⇒20t^2 +16t = 0  ⇒4t(5t+4)=0  (3) 4t=0⇒4cos 2x = 0  ⇒cos 2x = cos (π/2) ; x= ± (π/4) +nπ  (4) t=−(4/5)⇒cos 2x =−(4/5)   ⇒2x = ± arccos (−(4/5))+2nπ  ⇒x=± (1/2) arccos (−(4/5))+nπ
sin(5x)=5sinxcos4x10sin3xcos2x+sin5x4sinxcos4x+5sinxcos4x10sin3xcos2x+sin5xcos5x=09sinxcos4x10sin3xcos2x+sin5x=0sinx(9cos4x10sin2xcos2x+sin4x)=0(1)sinx=0x={2nπ(2n+1)π;nZ(2)9(1+cos2x2)252sin22x+(1cos2x2)2=0letcos2x=t9(1+t2)252(1t2)+(1t2)2=09t2+18t+94(55t2)2+12t+t24=09t2+18t+910+10t2+12t+t2=020t2+16t=04t(5t+4)=0(3)4t=04cos2x=0cos2x=cosπ2;x=±π4+nπ(4)t=45cos2x=452x=±arccos(45)+2nπx=±12arccos(45)+nπ

Leave a Reply

Your email address will not be published. Required fields are marked *