Menu Close

Solve-for-real-numbers-log-9-x-log-2-7-x-1-




Question Number 171360 by Shrinava last updated on 13/Jun/22
Solve for real numbers:  log_9  x  ∙  log_2  (7 − x) = 1
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\mathrm{log}_{\mathrm{9}} \:\mathrm{x}\:\:\centerdot\:\:\mathrm{log}_{\mathrm{2}} \:\left(\mathrm{7}\:−\:\mathrm{x}\right)\:=\:\mathrm{1} \\ $$
Answered by MJS_new last updated on 13/Jun/22
((ln x)/(2ln 3))×((ln (7−x))/(ln 2))=1  ln x ln (7−x) =2ln 3 ln 2  ln x ln (7−x) =ln 3 ln 4  obviously ⇒  x_1 =3  x_2 =4
$$\frac{\mathrm{ln}\:{x}}{\mathrm{2ln}\:\mathrm{3}}×\frac{\mathrm{ln}\:\left(\mathrm{7}−{x}\right)}{\mathrm{ln}\:\mathrm{2}}=\mathrm{1} \\ $$$$\mathrm{ln}\:{x}\:\mathrm{ln}\:\left(\mathrm{7}−{x}\right)\:=\mathrm{2ln}\:\mathrm{3}\:\mathrm{ln}\:\mathrm{2} \\ $$$$\mathrm{ln}\:{x}\:\mathrm{ln}\:\left(\mathrm{7}−{x}\right)\:=\mathrm{ln}\:\mathrm{3}\:\mathrm{ln}\:\mathrm{4} \\ $$$$\mathrm{obviously}\:\Rightarrow \\ $$$${x}_{\mathrm{1}} =\mathrm{3} \\ $$$${x}_{\mathrm{2}} =\mathrm{4} \\ $$
Commented by Rasheed.Sindhi last updated on 14/Jun/22
∩i⊂∈ sir!
$$\cap\boldsymbol{\mathrm{i}}\subset\in\:\boldsymbol{\mathrm{sir}}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *