Menu Close

Solve-for-real-numbers-sin-x-cos-x-sec-x-csc-x-2-2-




Question Number 157265 by MathSh last updated on 21/Oct/21
Solve for real numbers:  sin(x) + cos(x) + sec(x)∙csc(x)=2+(√2)
Solveforrealnumbers:sin(x)+cos(x)+sec(x)csc(x)=2+2
Answered by TheSupreme last updated on 21/Oct/21
sin(x)+cos(x)−(1/(sin(x)cos(x)))=A  ±s(√(1−s^2 ))−(±(1/(s(√(1−s^2 )))))=A  s^2 (√(1−s^2 ))+s−s^3 =±As(√(1−s^2 ))  (s^2 −(±As))(√(1−s^2 ))=s^3 −s  s≠0  (s−(±A))(√(1−s^2 ))=s^2 −1  (s−(±A))=−(√(1−s^2 ))  s^2 +A^2 −(±2sA)=1−s^2   2s^2 −(±2sA)+A^2 −1=0  s_(1,2) =((2A±(√(4A^2 +8A^2 )))/4)=A((1±(√3))/2) (a)  s_(1,2) =A((−1±(√3))/2)  ...   s≤1  s_1 =(2+(√2))(((1−(√3))/2)) (a)  cos=(√(1−s^2 ))  s_2 =(2+(√2))(((−1+(√3))/2)) (b)  cos=−(√(1−s^2 ))
sin(x)+cos(x)1sin(x)cos(x)=A±s1s2(±1s1s2)=As21s2+ss3=±As1s2(s2(±As))1s2=s3ss0(s(±A))1s2=s21(s(±A))=1s2s2+A2(±2sA)=1s22s2(±2sA)+A21=0s1,2=2A±4A2+8A24=A1±32(a)s1,2=A1±32s1s1=(2+2)(132)(a)cos=1s2s2=(2+2)(1+32)(b)cos=1s2

Leave a Reply

Your email address will not be published. Required fields are marked *