Menu Close

Solve-for-real-numbers-x-12-15x-3-14-0-




Question Number 162622 by HongKing last updated on 30/Dec/21
Solve for real numbers:  x^(12)  - 15x^3  + 14 = 0
Solveforrealnumbers:x1215x3+14=0
Answered by Ar Brandon last updated on 30/Dec/21
x=1    t^4 −15t+14=0 , t=x^3   t^4 −t−14t+14=0  (t^4 −t)−(14t−14)=0  t(t^3 −1)−14(t−1)=0  t(t−1)(t^2 +t+1)−14(t−1)=0  (t−1)(t^3 +t^2 +t−14)=0  (t−1)[(t^3 −4t)+(t^2 +5t−14)]=0  (t−1)[t(t^2 −4)+(t−2)(t+7)]=0  (t−1)[t(t−2)(t+2)+(t−2)(t+7)]=0  (t−1)(t−2)(t^2 +3t+7)=0  t=1, t=2, t=((−3+i(√(19)))/2), t=((−3−i(√(19)))/2)  x=1, x=(2)^(1/3)  for x∈R
x=1t415t+14=0,t=x3t4t14t+14=0(t4t)(14t14)=0t(t31)14(t1)=0t(t1)(t2+t+1)14(t1)=0(t1)(t3+t2+t14)=0(t1)[(t34t)+(t2+5t14)]=0(t1)[t(t24)+(t2)(t+7)]=0(t1)[t(t2)(t+2)+(t2)(t+7)]=0(t1)(t2)(t2+3t+7)=0t=1,t=2,t=3+i192,t=3i192x=1,x=23forxR
Commented by HongKing last updated on 31/Dec/21
cool my dear Sir thank you
coolmydearSirthankyou
Answered by aleks041103 last updated on 30/Dec/21
t=x^3   t^4 −15t+14=0  t^4 −t−14t+14=0  t(t^3 −1)−14(t−1)=0  t(t−1)(t^2 +t+1)−14(t−1)=0  (t−1)(t^3 +t^2 +t−14)=0  2^3 +2^2 +2−14=0  ⇒t^3 +t^2 +t−14=(t−2)(t^2 +3t+7)  ⇒t^4 −15t+14=(t−1)(t−2)(t^2 +3t+7)=0  ⇒t∈{1,2,((−3±(√(9−4.7)))/2)}∩R  ⇒t∈{1,2}  ⇒x=1;(2)^(1/3)
t=x3t415t+14=0t4t14t+14=0t(t31)14(t1)=0t(t1)(t2+t+1)14(t1)=0(t1)(t3+t2+t14)=023+22+214=0t3+t2+t14=(t2)(t2+3t+7)t415t+14=(t1)(t2)(t2+3t+7)=0t{1,2,3±94.72}Rt{1,2}x=1;23
Commented by HongKing last updated on 31/Dec/21
thank you my dear Sir cool
thankyoumydearSircool
Answered by MJS_new last updated on 31/Dec/21
x^(12) −15x^3 +14=0  (x^6 −3x^3 +2)(x^6 +3x^3 +7)=0  (x−1)(x^2 +x+1)(x^3 −2)(x^6 +3x^3 +7)=0  x_1 =1  x_2 =2^(1/3)   no other real solutions
x1215x3+14=0(x63x3+2)(x6+3x3+7)=0(x1)(x2+x+1)(x32)(x6+3x3+7)=0x1=1x2=21/3nootherrealsolutions
Commented by HongKing last updated on 31/Dec/21
cool my dear Sir thank you
coolmydearSirthankyou

Leave a Reply

Your email address will not be published. Required fields are marked *