Menu Close

Solve-for-real-numbers-x-2-2x-3siny-4cosy-6-0-




Question Number 149478 by mathdanisur last updated on 05/Aug/21
Solve for real numbers:  x^2 −2x−3siny−4cosy + 6 = 0
Solveforrealnumbers:x22x3sin\boldsymboly4cos\boldsymboly+6=0
Commented by iloveisrael last updated on 06/Aug/21
Δ≥0  3sin y+4cosy−6≥−1  5  sin (y+tan^(−1) ((4/3)))≥5  sin (y+tan^(−1) ((4/3)))=1  ⇒y+tan^(−1) ((4/3))= (π/2)+2kπ  ⇒y=(π/2)−tan^(−1) ((4/3))+2kπ
Δ03siny+4cosy615sin(y+tan1(43))5sin(y+tan1(43))=1y+tan1(43)=π2+2kπy=π2tan1(43)+2kπ
Commented by mathdanisur last updated on 06/Aug/21
Thankyou Ser
Thankyou\boldsymbolSer
Answered by mr W last updated on 05/Aug/21
3siny−4cosy =x^2 −2x+6  5(siny (3/5)−cosy (4/5)) =x^2 −2x+6  5(siny cos α−cosysin α) =(x−1)^2 +5  with cos α=(3/5), sin α=(4/5), tan α=(4/3)  5 sin (y−α)=(x−1)^2 +5  5 sin (y−tan^(−1) (4/3))=(x−1)^2 +5  LHS≤5  RHS≥5  ⇒LHS=RHS=5  ⇒x=1  ⇒sin (y−tan^(−1) (4/3))=1  ⇒y−tan^(−1) (4/3)=2kπ+(π/2)  ⇒y=2kπ+(π/2)+tan^(−1) (4/3)
3sin\boldsymboly4cos\boldsymboly=x22x+65(sin\boldsymboly35cos\boldsymboly45)=x22x+65(sin\boldsymbolycosαcos\boldsymbolysinα)=(x1)2+5withcosα=35,sinα=45,tanα=435sin(yα)=(x1)2+55sin(ytan143)=(x1)2+5LHS5RHS5LHS=RHS=5x=1sin(ytan143)=1ytan143=2kπ+π2y=2kπ+π2+tan143
Commented by mathdanisur last updated on 05/Aug/21
Thank you Ser, cool
Thankyou\boldsymbolSer,cool
Commented by peter frank last updated on 05/Aug/21
explanation 2nd and 3rd line
explanation2ndand3rdline
Commented by mr W last updated on 05/Aug/21
i added some lines more.
iaddedsomelinesmore.
Commented by peter frank last updated on 05/Aug/21
thank you
thankyou
Commented by Tawa11 last updated on 05/Aug/21
great
great
Answered by MJS_new last updated on 05/Aug/21
x=1±(√(−5+3sin y +4cos y))  −10≤−5+3sin y +4cos y ≤0  ⇒  −5+3sin y +4cos y =0 ⇔ y=2nπ+arctan (3/4)  ⇒  solution is  x=1∧y=2nπ+arctan (3/4)∀n∈Z
x=1±5+3siny+4cosy105+3siny+4cosy05+3siny+4cosy=0y=2nπ+arctan34solutionisx=1y=2nπ+arctan34nZ
Commented by mathdanisur last updated on 05/Aug/21
Thank you Ser, cool
ThankyouSer,coolThankyou\boldsymbolSer,cool

Leave a Reply

Your email address will not be published. Required fields are marked *