Menu Close

Solve-for-real-numbers-x-32-x-16-y-2-2-2-x-12-y-




Question Number 158275 by HongKing last updated on 01/Nov/21
Solve for real numbers:  x^(32)  + x^(16)  + y^2  = 2 (√2) x^(12)  y
Solveforrealnumbers:x32+x16+y2=22x12y
Answered by mindispower last updated on 01/Nov/21
x^(32) +x^(16) ≥2x^(24)  equalite x^(16) =x^8 ⇒x∈{0,1,−1  2x^(24) +y^2 ≥2(√2)x^(12) y  ⇔((√2)x^(12) −y)^2 ≥0  y=(√2)x^(12) ∈{0,(√2)}  (x,y)={(0,0);(0,(√2));(1,0);(1,(√2));(−1,0);(−1,(√2))}
x32+x162x24equalitex16=x8x{0,1,12x24+y222x12y(2x12y)20y=2x12{0,2}(x,y)={(0,0);(0,2);(1,0);(1,2);(1,0);(1,2)}
Commented by HongKing last updated on 02/Nov/21
cool my dear Ser, thank you
coolmydearSer,thankyou
Answered by MJS_new last updated on 02/Nov/21
we can easily solve for y:  y=x^8 ((√2)x^4 +∣x^8 −1∣i)  ⇒ to stay in R we need x^8 =0 ∨ x^8 −1 =0 ⇒  ⇒ x=0 ∨ x=±1  ⇒  x=0∧y=0 ∨ x=±1∧y=(√2)
wecaneasilysolvefory:y=x8(2x4+x81i)tostayinRweneedx8=0x81=0x=0x=±1x=0y=0x=±1y=2
Commented by HongKing last updated on 02/Nov/21
cool my dear Sir, thank you so much
coolmydearSir,thankyousomuch

Leave a Reply

Your email address will not be published. Required fields are marked *