Menu Close

solve-for-real-values-of-x-the-equation-4-3-2x-1-17-3-x-7-if-m-and-n-are-positive-real-numbers-other-than-1-show-that-the-log-n-m-log-1-m-n-0-




Question Number 104199 by hardylanes last updated on 20/Jul/20
solve for real values of x the equation  4(3^(2x+1) )+17(3^x )=7.  if m and n are positive real numbers other  than 1, show that the log_n m+log_(1/m) n=0
solveforrealvaluesofxtheequation4(32x+1)+17(3x)=7.ifmandnarepositiverealnumbersotherthan1,showthatthelognm+log1mn=0
Answered by bemath last updated on 20/Jul/20
12.3^x +17.3^x −7=0  3^x = ((−17+(√(289+48.7)))/(24))  3^x  = ((−17+25)/(24)) = (1/3)  ∴ x = −1
12.3x+17.3x7=03x=17+289+48.7243x=17+2524=13x=1
Answered by OlafThorendsen last updated on 20/Jul/20
4(3^(2x+1) )+17(3^x ) = 7  12(3^x )^2 +17(3^x )−7 = 0  u = 3^x   12u^2 +17u−7 = 0  Δ = 17^2 −4×12×(−7) = 625 = 25^2   u = ((−17±25)/(24))  u = 3^x  ⇒ u>0  then u = ((−17+25)/(24)) = (1/3)  u = 3^x  = (1/3) ⇒ x = −1  I think your second  question is false  (it′s true only for m = n  or m = (1/n)) but :  log_n m+log_(1/n) m =  ((lnm)/(lnn))+((lnm)/(ln(1/n))) =   ((lnm)/(lnn))−((lnm)/(lnn)) = 0
4(32x+1)+17(3x)=712(3x)2+17(3x)7=0u=3x12u2+17u7=0Δ=1724×12×(7)=625=252u=17±2524u=3xu>0thenu=17+2524=13u=3x=13x=1Ithinkyoursecondquestionisfalse(itstrueonlyform=norm=1n)but:lognm+log1nm=lnmlnn+lnmln1n=lnmlnnlnmlnn=0

Leave a Reply

Your email address will not be published. Required fields are marked *