Menu Close

Solve-for-real-x-1-x-1-2x-x-1-3-where-x-is-the-greatest-integer-less-than-or-equal-to-x-and-x-x-x-e-g-3-4-3-and-3-4-0-4-




Question Number 22463 by Tinkutara last updated on 18/Oct/17
Solve for real x:  (1/([x])) + (1/([2x])) = (x) + (1/3),  where [x] is the greatest integer less  than or equal to x and (x) = x − [x],  [e.g. [3.4] = 3 and (3.4) = 0.4].
Solveforrealx:1[x]+1[2x]=(x)+13,where[x]isthegreatestintegerlessthanorequaltoxand(x)=x[x],[e.g.[3.4]=3and(3.4)=0.4].
Answered by ajfour last updated on 18/Oct/17
let x=n+f  ⇒ (1/n)+(1/(2n+[2f]))=f+(1/3)  Case I:   f< 1/2  ⇒   (3/(2n))=f+(1/3)  ⇒     0≤  (3/(2n))−(1/3) <(1/2)  or     ⇒   (1/3) ≤ (3/(2n)) <(5/6)  ⇒    (9/5) < n≤(9/2)  ⇒ n=2, 3, 4  corresponding f=(3/(2n))−(1/3)   f= (5/(12)), (1/6), (1/(24))  So x_1 =2+(5/(12))= ((29)/(12))         x_2 =3+(1/6)=((19)/6)         x_3 =4+(1/(24))=((97)/(24))  Case II: if  (1/2)≤ f <1   (1/n)+(1/(2n+1))=f+(1/3)  As    f ≥1/2        (1/2)≤ ((3n+1)/(n(2n+1)))−(1/3) < 1  ⇒    (5/6) ≤ ((3n+1)/(n(2n+1))) <(4/3)  condition (a):  ⇒   10n^2 +5n ≤ 18n+6  or   10n^2 −13n−6 ≤ 0        10(n−((13)/(20)))^2 ≤ 6+((169)/(40))   ⇒ ((13)/(20))−(√((409)/(400))) ≤ n ≤ ((13)/(20))+(√((409)/(400)))   ⇒      n=0, 1  condition (b):    8n^2 +4n > 9n+3  ⇒   8n^2 −5n−3 > 0  ⇒     8(n−(5/(16)))^2 > 3+((25)/(32))  n < (5/(16))−((11)/(16)) and  n > (5/(16))+((11)/(16))  ⇒   n< −(6/(16)) and  n > 1  Intersection of the two conditions  gives no solution for n for this  case.  So finally x=((29)/(12)), ((19)/6), ((97)/(24)) .
letx=n+f1n+12n+[2f]=f+13CaseI:f<1/232n=f+13032n13<12or1332n<5695<n92n=2,3,4correspondingf=32n13f=512,16,124Sox1=2+512=2912x2=3+16=196x3=4+124=9724CaseII:if12f<11n+12n+1=f+13Asf1/2123n+1n(2n+1)13<1563n+1n(2n+1)<43condition(a):10n2+5n18n+6or10n213n6010(n1320)26+169401320409400n1320+409400n=0,1condition(b):8n2+4n>9n+38n25n3>08(n516)2>3+2532n<5161116andn>516+1116n<616andn>1Intersectionofthetwoconditionsgivesnosolutionfornforthiscase.Sofinallyx=2912,196,9724.
Commented by Tinkutara last updated on 18/Oct/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *