Menu Close

solve-for-x-1-1-x-x-1-1-1-10-10-




Question Number 170520 by mr W last updated on 25/May/22
solve for x  (1+(1/x))^(x+1) =(1+(1/(10)))^(10)
$${solve}\:{for}\:{x} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}+\mathrm{1}} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{10}}\right)^{\mathrm{10}} \\ $$
Commented by mr W last updated on 26/May/22
yes. show how you got?
$${yes}.\:{show}\:{how}\:{you}\:{got}? \\ $$
Commented by cortano1 last updated on 25/May/22
x=−11 ?
$${x}=−\mathrm{11}\:? \\ $$
Answered by robertocaesar last updated on 26/May/22
(((x+1)/x))^(x+1) =....  ((x/(x+1)))^(−(x+1)) =....  (1−(1/(x+1)))^(−(x+1)) =....  (1+ (1/(−(x+1)  )))^(−(x+1)) =(1+(1/(10)))^(10)   ⇒ x=−11
$$\left(\frac{{x}+\mathrm{1}}{{x}}\right)^{{x}+\mathrm{1}} =…. \\ $$$$\left(\frac{{x}}{{x}+\mathrm{1}}\right)^{−\left({x}+\mathrm{1}\right)} =…. \\ $$$$\left(\mathrm{1}−\frac{\mathrm{1}}{{x}+\mathrm{1}}\right)^{−\left({x}+\mathrm{1}\right)} =…. \\ $$$$\left(\mathrm{1}+\:\frac{\mathrm{1}}{−\left({x}+\mathrm{1}\right)\:\:}\right)^{−\left({x}+\mathrm{1}\right)} =\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{10}}\right)^{\mathrm{10}} \\ $$$$\Rightarrow\:{x}=−\mathrm{11} \\ $$
Commented by mr W last updated on 26/May/22
thanks!
$${thanks}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *