Menu Close

Solve-for-x-10-4-x-x-4-10-8-




Question Number 24443 by Tinkutara last updated on 18/Nov/17
Solve for x:  (10^(−4) x)^x =4×10^(−8)
Solveforx:(104x)x=4×108
Answered by ajfour last updated on 18/Nov/17
⇒  xln (10^(−4) x)=ln 4−8  or    ln x−4 =((ln 4)/x)−(8/x)  ⇒ (1/2)(2ln x−8) = (1/x)(2ln 2−8)  ⇒  x=2   ( at least) .
xln(104x)=ln48orlnx4=ln4x8x12(2lnx8)=1x(2ln28)x=2(atleast).
Commented by Tinkutara last updated on 19/Nov/17
Thank you very much Sir!
ThankyouverymuchSir!
Answered by mrW1 last updated on 19/Nov/17
To simply the writing, let′s say  the equation is (ax)^x =b.  [ln (ax)]x=ln b  [ln (ax)](ax)=aln b  [ln (ax)]e^(ln (ax)) =aln b  ⇒ln (ax)=W(aln b)  ⇒ax=e^(W(aln b)) =((aln b)/(W(aln b)))  ⇒x=((ln b)/(W(aln b)))    with a=10^(−4)  and b=4×10^(−8)   ⇒x=((ln 4−8ln 10)/(W[10^(−4) (ln 4−8ln 10)]))  =((−17.0344)/(W[−1.70344×10^(−3) ]))= { ((((−17.0344)/(−8.5172))=2)),((((−17.0344)/(−0.0017064))=9983)) :}  i.e. there are two solutions:  x=2 and 9983.
Tosimplythewriting,letssaytheequationis(ax)x=b.[ln(ax)]x=lnb[ln(ax)](ax)=alnb[ln(ax)]eln(ax)=alnbln(ax)=W(alnb)ax=eW(alnb)=alnbW(alnb)x=lnbW(alnb)witha=104andb=4×108x=ln48ln10W[104(ln48ln10)]=17.0344W[1.70344×103]={17.03448.5172=217.03440.0017064=9983i.e.therearetwosolutions:x=2and9983.
Commented by Tinkutara last updated on 19/Nov/17
And how to find W[−1.703×10^(−5) ]  using Geogebra?
AndhowtofindW[1.703×105]usingGeogebra?
Commented by mrW1 last updated on 19/Nov/17
If you don′t have a calculator for  W−function, you can calculate the  value(s) of W(p) using Geogebra.  The value(s) of W(p) is (are) the  root(s) of equation  f(x)=xe^x −p=0  For p<0 there are usually two roots.
IfyoudonthaveacalculatorforWfunction,youcancalculatethevalue(s)ofW(p)usingGeogebra.Thevalue(s)ofW(p)is(are)theroot(s)ofequationf(x)=xexp=0Forp<0thereareusuallytworoots.
Commented by mrW1 last updated on 19/Nov/17
Commented by mrW1 last updated on 19/Nov/17
The example above shows  W(−0.2)=−2.54264 or −0.25917
TheexampleaboveshowsW(0.2)=2.54264or0.25917
Commented by Tinkutara last updated on 19/Nov/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *